Publications by authors named "Julie Quinet"

The caudal fastigial nuclei (cFN) are the output nuclei by which the medio-posterior cerebellum influences the production of saccades toward a visual target. On the basis of the organization of their efferences to the premotor burst neurons and the bilateral control of saccades, the hypothesis was proposed that the same unbalanced activity accounts for the dysmetria of all saccades during cFN unilateral inactivation, regardless of whether the saccade is horizontal, oblique, or vertical. We further tested this hypothesis by studying, in two head-restrained macaques, the effects of unilaterally inactivating the caudal fastigial nucleus on saccades toward a target moving vertically with a constant, increasing or decreasing speed.

View Article and Find Full Text PDF

During normal viewing, we direct our eyes between objects in three-dimensional (3D) space many times a minute. To accurately fixate these objects, which are usually located in different directions and at different distances, we must generate eye movements with appropriate versional and vergence components. These combined saccade-vergence eye movements result in disjunctive saccades with a vergence component that is much faster than that generated during smooth, symmetric vergence eye movements.

View Article and Find Full Text PDF

To view a nearby target, the three components of the near response are brought into play: ) the eyes are converged through contraction of the medial rectus muscles to direct both foveae at the target, ) the ciliary muscle contracts to allow the lens to thicken, increasing its refractive power to focus the near target on the retina, and ) the pupil constricts to increase depth of field. In this study, we utilized retrograde transsynaptic transport of the N2c strain of rabies virus injected into the ciliary body of one eye of macaque monkeys to identify premotor neurons that control lens accommodation. We previously used this approach to label a premotor population located in the supraoculomotor area.

View Article and Find Full Text PDF

The caudal fastigial nuclei (cFN) are the output nuclei by which the medio-posterior cerebellum influences the production of saccadic and pursuit eye movements. We investigated the consequences of unilateral inactivation on the pursuit eye movement made immediately after an interceptive saccade toward a centrifugal target. We describe here the effects when the target moved along the horizontal meridian with a 10 or 20°/s speed.

View Article and Find Full Text PDF

The caudal fastigial nuclei (cFN) are the output nuclei by which the medio-posterior cerebellum influences the production of visual saccades. We investigated in two head-restrained monkeys their contribution to the generation of interceptive saccades toward a target moving centrifugally by analyzing the consequences of a unilateral inactivation (10 injection sessions). We describe here the effects on saccades made toward a centrifugal target that moved along the horizontal meridian with a constant (10, 20, or 40°/s), increasing (from 0 to 40°/s over 600 ms), or decreasing (from 40 to 0°/s over 600 ms) speed.

View Article and Find Full Text PDF

In primates, the appearance of an object moving in the peripheral visual field elicits an interceptive saccade that brings the target image onto the foveae. This foveation is then maintained more or less efficiently by slow pursuit eye movements and subsequent catch-up saccades. Sometimes, the tracking is such that the gaze direction looks spatiotemporally locked onto the moving object.

View Article and Find Full Text PDF

An object moving in the visual field triggers a saccade that brings its image onto the fovea. It is followed by a combination of slow eye movements and catch-up saccades that try to keep the target image on the fovea as long as possible. The accuracy of this ability to track the "here-and-now" location of a visual target contrasts with the spatiotemporally distributed nature of its encoding in the brain.

View Article and Find Full Text PDF

Unlabelled: When an object moves in the visual field, its motion evokes a streak of activity on the retina and the incoming retinal signals lead to robust oculomotor commands because corrections are observed if the trajectory of the interceptive saccade is perturbed by a microstimulation in the superior colliculus. The present study complements a previous perturbation study by investigating, in the head-restrained monkey, the generation of saccades toward a transient moving target (100-200 ms). We tested whether the saccades land on the average of antecedent target positions or beyond the location where the target disappeared.

View Article and Find Full Text PDF

The fastigial oculomotor region is the output by which the medioposterior cerebellum influences the generation of saccades. Recent inactivation studies reported observations suggesting an involvement in their dynamics (velocity and duration). In this work, we tested this hypothesis in the head-restrained monkey with the electrical microstimulation technique.

View Article and Find Full Text PDF

It is known that expectation of reward speeds up saccades. Past studies have also shown the presence of a saccadic velocity bias in the orbit, resulting from a biomechanical regulation over varying eccentricities. Nevertheless, whether and how reward expectation interacts with the biomechanical regulation of saccadic velocities over varying eccentricities remains unknown.

View Article and Find Full Text PDF

The location of motor-related activity in the deeper layers of the superior colliculus (SC) is thought to generate a desired displacement command specifying the amplitude and direction of saccadic eye movements. However, the amplitude of saccadic eye movements made to visual targets can be systematically altered by surreptitiously moving the target location after the saccade has been initiated. Depending on whether the target is moved closer to or further from the fixation location, adaptation of saccade amplitude results in movements that are either smaller or larger than control movements.

View Article and Find Full Text PDF

When primates maintain their gaze directed toward a visual target (visual fixation), their eyes display a combination of miniature fast and slow movements. An involvement of the cerebellum in visual fixation is indicated by the severe gaze instabilities observed in patients suffering from cerebellar lesions. Recent studies in non-human primates have identified a cerebellar structure, the fastigial oculomotor region (FOR), as a major cerebellar output nucleus with projections toward oculomotor regions in the brain stem.

View Article and Find Full Text PDF

It has been shown that inactivation of the caudal fastigial nucleus (cFN) by local injection of muscimol leads to inaccurate gaze shifts in the head-unrestrained monkey and that the gaze dysmetria is primarily due to changes in the horizontal amplitude of eye saccades in the orbit. Moreover, changes in the relationship between amplitude and duration are observed for only the eye saccades and not for the head movements. These results suggest that the cFN output primarily influences a neural network involved in moving the eyes in the orbit.

View Article and Find Full Text PDF

The effects of unilateral cFN inactivation on horizontal and vertical gaze shifts generated from a central target toward peripheral ones were tested in two head unrestrained monkeys. After muscimol injection, the eye component was hypermetric during ipsilesional gaze shifts, hypometric during contralesional ones and deviated toward the injected side during vertical gaze shifts. The ipsilesional gaze hypermetria increased with target eccentricity until approximately 24 degrees after which it diminished and became smaller than the hypermetria of the eye component.

View Article and Find Full Text PDF

The influence of background illumination on saccades towards small target LEDs was examined in three rhesus monkeys. In darkness, fixational saccades and those aimed at horizontal targets had a trajectory that was biased upward. This bias was not observed in the illuminated condition.

View Article and Find Full Text PDF

Lesions in the caudal fastigial nucleus (cFN) severely impair the accuracy of visually guided saccades in the head-restrained monkey. Is the saccade dysmetria a central perturbation in issuing commands for orienting gaze (eye in space) or is it a more peripheral impairment in generating oculomotor commands? This question was investigated in two head-unrestrained monkeys by analyzing the effect of inactivating one cFN on horizontal gaze shifts generated from a straight ahead fixation light-emitting diode (LED) toward a 40 degrees eccentric target LED. After muscimol injections, when viewing the fixation LED, the starting position of the head was changed (ipsilesional and upward deviations).

View Article and Find Full Text PDF

The contribution of the cerebellar vermal lobules Vic/VII and of the caudal part of the fastigial nucleus (cFN) to the control of saccadic eye movements has been established by converging neurophysiological approaches. The precise delineation of these saccade-related territories in the medio-posterior cerebellum (MPC) has stimulated the development of detailed investigations of its output nucleus, the cFN. In the present paper, we review recent studies that describe the deficits of the saccadic displacement of the line of sight (gaze) induced by a reversible cFN inactivation under different experimental situations (head restrained, head-unrestrained or body-unrestrained).

View Article and Find Full Text PDF