Background: Black women are at an increased risk of developing uterine leiomyomas and experiencing worse disease prognosis than White women. Epidemiologic and molecular factors have been identified as underlying these disparities, but there remains a paucity of deep, multiomic analysis investigating molecular differences in uterine leiomyomas from Black and White patients.
Objective: To identify molecular alterations within uterine leiomyoma tissues correlating with patient race by multiomic analyses of uterine leiomyomas collected from cohorts of Black and White women.
We performed a deep proteogenomic analysis of bulk tumor and laser microdissection enriched tumor cell populations from high-grade serous ovarian cancer (HGSOC) tissue specimens spanning a broad spectrum of purity. We identified patients with longer progression-free survival had increased immune-related signatures and validated proteins correlating with tumor-infiltrating lymphocytes in 65 tumors from an independent cohort of HGSOC patients, as well as with overall survival in an additional 126 HGSOC patient cohort. We identified that homologous recombination deficient (HRD) tumors are enriched in pathways associated with metabolism and oxidative phosphorylation that we validated in independent patient cohorts.
View Article and Find Full Text PDFNumerous multi-omic investigations of cancer tissue have documented varying and poor pairwise transcript:protein quantitative correlations, and most deconvolution tools aiming to predict cell type proportions (cell admixture) have been developed and credentialed using transcript-level data alone. To estimate cell admixture using protein abundance data, we analyzed proteome and transcriptome data generated from contrived admixtures of tumor, stroma, and immune cell models or those selectively harvested from the tissue microenvironment by laser microdissection from high grade serous ovarian cancer (HGSOC) tumors. Co-quantified transcripts and proteins performed similarly to estimate stroma and immune cell admixture (r ≥ 0.
View Article and Find Full Text PDFBreast cancer in young patients is known to exhibit more aggressive biological behavior and is associated with a less favorable prognosis than the same disease in older patients, owing in part to an increased incidence of brain metastases. The mechanistic explanations behind these findings remain poorly understood. We recently reported that young mice, in comparison to older mice, developed significantly greater brain metastases in four mouse models of triple-negative and luminal B breast cancer.
View Article and Find Full Text PDFAlcohol use disorder (AUD) affects transcriptomic, epigenetic and proteomic expression in several organs, including the brain. There has not been a comprehensive analysis of altered protein abundance focusing on the multiple brain regions that undergo neuroadaptations occurring in AUD. We performed a quantitative proteomic analysis using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of human postmortem tissue from brain regions that play key roles in the development and maintenance of AUD, the amygdala (AMG), hippocampus (HIPP), hypothalamus (HYP), nucleus accumbens (NAc), prefrontal cortex (PFC) and ventral tegmental area (VTA).
View Article and Find Full Text PDFA risk assessment model for metastasis in endometrioid endometrial cancer (EEC) was developed using molecular and clinical features, and prognostic association was examined. Patients had stage I, IIIC, or IV EEC with tumor-derived RNA-sequencing or microarray-based data. Metastasis-associated transcripts and platform-centric diagnostic algorithms were selected and evaluated using regression modeling and receiver operating characteristic curves.
View Article and Find Full Text PDFEnriched tumor epithelium, tumor-associated stroma, and whole tissue were collected by laser microdissection from thin sections across spatially separated levels of ten high-grade serous ovarian carcinomas (HGSOCs) and analyzed by mass spectrometry, reverse phase protein arrays, and RNA sequencing. Unsupervised analyses of protein abundance data revealed independent clustering of an enriched stroma and enriched tumor epithelium, with whole tumor tissue clustering driven by overall tumor "purity." Comparing these data to previously defined prognostic HGSOC molecular subtypes revealed protein and transcript expression from tumor epithelium correlated with the differentiated subtype, whereas stromal proteins (and transcripts) correlated with the mesenchymal subtype.
View Article and Find Full Text PDFPathogenic mutations in fumarate hydratase (FH) drive hereditary leiomyomatosis and renal cell cancer (HLRCC) and increase the risk of developing uterine leiomyomas (ULMs). An integrated proteogenomic analysis of ULMs from HLRCC (n = 16; FH-mutation confirmed) and non-syndromic (NS) patients (n = 12) identified a significantly higher protein:transcript correlation in HLRCC (R = 0.35) vs.
View Article and Find Full Text PDFReversible protein phosphorylation represents a key mechanism by which signals are transduced in eukaryotic cells. Dysregulated phosphorylation is also a hallmark of carcinogenesis and represents key drug targets in the precision medicine space. Thus, methods that preserve phosphoprotein integrity in the context of clinical tissue analyses are crucially important in cancer research.
View Article and Find Full Text PDFPreoperative use of metformin in obese women with endometrioid endometrial cancer (EEC) reduces tumor proliferation and inhibits the mammalian target of rapamycin pathway, though is only effective in select cases. This study sought to identify a predictive and/or pharmacodynamic proteomic signature of metformin response to tailor its pharmacologic use. Matched pre- and post-metformin-treated tumor tissues from a recently completed preoperative window trial of metformin in EEC patients (ClinicalTrials.
View Article and Find Full Text PDFBackground: The objective of this study was to identify molecular alterations associated with disease outcomes for white and black patients with endometrioid endometrial cancer (EEC).
Methods: EEC samples from black (n = 17) and white patients (n = 13) were analyzed by proteomics (liquid chromatography-tandem mass spectrometry) and transcriptomics (RNA-seq). Coordinate alterations were validated with RNA-seq data from black (n = 49) and white patients (n = 216).
Background And Objective: Nua kinase 1 (NUAK1) was identified in multigene signatures of survival and suboptimal debulking in high-grade serous ovarian cancer (HGSOC). This study investigates the individual clinical and biologic contributions of NUAK1 in HGSOC patients and cell lines.
Methods: Public transcript expression, clinical, and outcome data were used to interrogate the relationship between NUAK1 and clinicopathologic factors and patient outcomes including progression-free survival (PFS) and molecular subtypes using logistic and Cox modeling.
Rhodopsin is a prototypical G-protein-coupled receptor (GPCR) that initiates phototransduction in the retina. The receptor consists of the apoprotein opsin covalently linked to the inverse agonist 11-cis retinal. Rhodopsin and opsin have been shown to form oligomers within the outer segment disc membranes of rod photoreceptor cells.
View Article and Find Full Text PDFFörster resonance energy transfer (FRET) is a nonradiative process for the transfer of energy from an optically excited donor molecule (D) to an acceptor molecule (A) in the ground state. The underlying theory predicting the dependence of the FRET efficiency on the sixth power of the distance between D and A has stood the test of time. In contrast, a comprehensive kinetic-based theory developed recently for FRET efficiencies among multiple donors and acceptors in multimeric arrays has waited for further testing.
View Article and Find Full Text PDFDespite its importance in reproductive biology and women's health, a detailed molecular-level understanding of the human endometrium is lacking. Indeed, no comprehensive studies have been undertaken to elucidate the important protein expression differences between the endometrial glandular epithelium and surrounding stroma during the proliferative and midsecretory phases of the menstrual cycle. We utilized laser microdissection to harvest epithelial cells and stromal compartments from proliferative and secretory premenopausal endometrial tissue and performed a global, quantitative mass spectrometry-based proteomics analysis.
View Article and Find Full Text PDFThe sigma-1 receptor (S1R) is a 223-amino-acid membrane protein that resides in the endoplasmic reticulum and the plasma membrane of some mammalian cells. The S1R is regulated by various synthetic molecules including (+)-pentazocine, cocaine and haloperidol and endogenous molecules such as sphingosine, dimethyltryptamine and dehydroepiandrosterone. Ligand-regulated protein chaperone functions linked to oxidative stress and neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and neuropathic pain have been attributed to the S1R.
View Article and Find Full Text PDFEndometrial cancer is the most common gynecologic malignancy in the United States but it remains poorly understood at the molecular level. This investigation was conducted to specifically assess whether gene expression changes underlie the clinical and pathologic factors traditionally used for determining treatment regimens in women with stage I endometrial cancer. These include the effect of tumor grade, depth of myometrial invasion and histotype.
View Article and Find Full Text PDFNanoparticles composed of a magnetic iron oxide core surrounded by a metal shell have utility in a broad range of biomedical applications. However, the presence of surface energy differences between the two components makes wetting of oxide with metal unfavorable, precluding a "core-shell" structure of an oxide core completely surrounded by a thin metal shell. Three-dimensional island growth followed by island coalescence into thick shells is favored over the two-dimensional layer-by-layer growth of a thin, continuous metal coating of a true core-shell.
View Article and Find Full Text PDFThe literature on GPCR (G-protein-coupled receptor) homo-oligomerization encompasses conflicting views that range from interpretations that GPCRs must be monomeric, through comparatively newer proposals that they exist as dimers or higher-order oligomers, to suggestions that such quaternary structures are rather ephemeral or merely accidental and may serve no functional purpose. In the present study we use a novel method of FRET (Förster resonance energy transfer) spectrometry and controlled expression of energy donor-tagged species to show that M(3)Rs (muscarinic M(3) acetylcholine receptors) at the plasma membrane exist as stable dimeric complexes, a large fraction of which interact dynamically to form tetramers without the presence of trimers, pentamers, hexamers etc. That M(3)R dimeric units interact dynamically was also supported by co-immunoprecipitation of receptors synthesized at distinct times.
View Article and Find Full Text PDFPseudomonas aeruginosa is a pathogenic Gram-negative bacterium that affects patients with cystic fibrosis and immunocompromised individuals. This bacterium coexpresses two unique forms of lipopolysaccharides (LPSs) on its surface, the A- and B-band LPS, which are among the main virulence factors that contribute to its pathogenicity. The polysaccharides in A-band LPSs are synthesized in the cytoplasm and translocated into the periplasm via an ATP-binding cassette (ABC) transporter consisting of a transmembrane protein, Wzm, and a cytoplasmic nucleotide-binding protein, Wzt.
View Article and Find Full Text PDFThe goal of the present study was to establish a standard operating procedure for mass spectrometry (MS)-based proteomic analysis of laser microdissected (LMD) formalin-fixed, paraffin-embedded (FFPE) uterine tissue. High resolution bioimage analysis of a large endometrial cancer tissue microarray immunostained for the breast cancer type 1 susceptibility protein enabled precise counting of cells to establish that there is an average of 600 cells/nL of endometrial cancer tissue. We sought to characterize the peptide recovery from various volumes of tissue gathered by LMD and processed/digested using the present methodology.
View Article and Find Full Text PDFObjective: The present study aimed to identify differentially expressed proteins employing a high resolution mass spectrometry (MS)-based proteomic analysis of endometrial cancer cells harvested using laser microdissection.
Methods: A differential MS-based proteomic analysis was conducted from discrete epithelial cell populations gathered by laser microdissection from 91 pathologically reviewed stage I endometrial cancer tissue samples (79 endometrioid and 12 serous) and 10 samples of normal endometrium from postmenopausal women. Hierarchical cluster analysis of protein abundance levels derived from a spectral count analysis revealed a number of proteins whose expression levels were common as well as unique to both histologic types.
Microsc Microanal
February 2010
The immunogold technique is a valuable method for labeling cellular macromolecules. However, multiple labeling using colloidal gold (cAu) nanoparticles of different sizes presents certain drawbacks; namely, as particle size increases, there is a decreased labeling efficiency and diminished spatial resolution with respect to the locations of labeled epitopes. Both concerns also limit the utility of heavy metal particles for comparative analysis of labeling densities.
View Article and Find Full Text PDF