Oceanic delphinids that occur in and around Navy operational areas are regularly exposed to intense military sonar broadcast within the frequency range of their hearing. However, empirically measuring the impact of sonar on the behavior of highly social, free-ranging dolphins is challenging. Additionally, baseline variability or the frequency of vocal state-switching among social oceanic dolphins during undisturbed conditions is lacking, making it difficult to attribute changes in vocal behavior to anthropogenic disturbance.
View Article and Find Full Text PDFThe pantropical spotted dolphin in the Eastern Tropical Pacific (ETP) is found in two genetically and phenotypically diverged ecotypes, coastal and offshore. These habitats have distinct acoustic characteristics, which can lead to the evolution of distinct acoustic communication. Whistles are sounds widely used by dolphins to mediate species and individual recognition and social interactions.
View Article and Find Full Text PDFLong-term passive acoustic monitoring of cetaceans is frequently limited by the data storage capacity and battery life of the recording system. Duty cycles are a mechanism for subsampling during the recording process that facilitates long-term passive acoustic studies. While duty cycles are often used, there has been little investigation on the impact that this approach has on the ability to answer questions about a species' behavior and occurrence.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2021
The most flexible communication systems are those of open-ended vocal learners that can acquire new signals throughout their lifetimes. While acoustic signals carry information in general voice features that affect all of an individual's vocalizations, vocal learners can also introduce novel call types to their repertoires. Delphinids are known for using such learned call types in individual recognition, but their role in other contexts is less clear.
View Article and Find Full Text PDFBackground: Prioritizing groupings of organisms or 'units' below the species level is a critical issue for conservation purposes. Several techniques encompassing different time-frames, from genetics to ecological markers, have been considered to evaluate existing biological diversity at a sufficient temporal resolution to define conservation units. Given that acoustic signals are expressions of phenotypic diversity, their analysis may provide crucial information on current differentiation patterns within species.
View Article and Find Full Text PDFPassive acoustic data collected from marine autonomous recording units deployed off Jacksonville, FL (from 13 September to 8 October 2009 and 3 December 2009 to 8 January 2010), were analyzed for detection of cetaceans and Navy sonar. Cetaceans detected included Balaenoptera acutorostrata, Eubalaena glacialis, B. borealis, Physeter macrocephalus, blackfish, and delphinids.
View Article and Find Full Text PDFAcoustic observation can complement visual observation to more effectively monitor occurrence and distribution of marine mammals. For effective acoustic censuses, calibration methods must be determined by joint visual and acoustic studies. Research is still needed in the field of acoustic species identification, particularly for smaller odontocetes.
View Article and Find Full Text PDFThe endangered beluga whale (Delphinapterus leucas) population in Cook Inlet, AK faces threats from a variety of anthropogenic factors, including coastal development, oil and gas exploration, vessel traffic, and military activities. To address existing gaps in understanding about the occurrence of belugas in Cook Inlet, a project was developed to use passive acoustic monitoring to document the year-round distribution of belugas, as well as killer whales (Orcinus orca), which prey on belugas. Beginning in June 2009, ten moorings were deployed throughout the Inlet and refurbished every two to eight months.
View Article and Find Full Text PDFJ Acoust Soc Am
October 2012
This letter introduces an algorithm for automatic detection of minke whale boing sounds. This method searches for frequency features of boings without calculating the continuous spectrogram of the data, thereby reducing computational time. The detector has been tested on 8 h of acoustic data recorded at the Station ALOHA Cabled Observatory in March 2007.
View Article and Find Full Text PDFMinke whales (Balaenoptera acutorostrata) in the tropical North Pacific are elusive and difficult to detect visually. The recent association of a unique sound called the "boing" to North Pacific minke whales has made it possible to use passive acoustics to investigate the occurrence of this species in Hawaiian waters. One year of recordings (17 February 2007-18 February 2008) made at the Station ALOHA Cabled Observatory were examined to investigate the characteristics of boings and temporal patterns in their occurrence at this site, located 100 km north of Oahu.
View Article and Find Full Text PDFThe ability to identify delphinid vocalizations to species in real-time would be an asset during shipboard surveys. An automated system, Real-time Odontocete Call Classification Algorithm (ROCCA), is being developed to allow real-time acoustic species identification in the field. This Matlab-based tool automatically extracts ten variables (beginning, end, minimum and maximum frequencies, duration, slope of the beginning and end sweep, number of inflection points, number of steps, and presence/absence of harmonics) from whistles selected from a real-time scrolling spectrograph (ISHMAEL).
View Article and Find Full Text PDF