As a result of thermal instability, some live attenuated viral (LAV) vaccines lose substantial potency from the time of manufacture to the point of administration. Developing regions lacking extensive, reliable refrigeration ("cold-chain") infrastructure are particularly vulnerable to vaccine failure, which in turn increases the burden of disease. Development of a robust, infectivity-based high throughput screening process for identifying thermostable vaccine formulations offers significant promise for vaccine development across a wide variety of LAV products.
View Article and Find Full Text PDFExcipients often used in pharmaceutical formulations have been reported to have inhibitory effects on P-glycoprotein, an important membrane-associated transport protein. Because inhibition of efflux transporters can have an effect on drug bioavailability, identification of these excipients and their extent of inhibition are therefore important for pharmaceutical development. We have developed an automated and integrated high-throughput process for identifying these excipients and their combinations.
View Article and Find Full Text PDFThree crystal forms of acetaminophen were prepared and characterized using a newly developed high-throughput crystallization platform, CrystalMax. The platform consists of design software, robotic sample dispensing and handling, and high-throughput microanalytics and is capable of running thousands of crystallizations in parallel using several different methods to drive supersaturation and subsequent crystallization. Additionally, structural models of the elusive third form of acetaminophen will be discussed on the basis of powder X-ray diffraction data.
View Article and Find Full Text PDF