Publications by authors named "Julie Millard"

Objective: Statements such as the Bridgetown Declaration serve as a wake-up call for action to address the significant mental health needs in small island developing states. Overarching frameworks and action plans have been developed to support nations to promote mental health and build resilience for their populations in the region, and while these frameworks and action plans provide direction, translating them into grassroots change can be a challenge. At the Creating Futures 23 conference, delegates from the Oceania region were invited to participate in a plenary workshop entitled Framing the Future.

View Article and Find Full Text PDF

An experiment for the upper-level biochemistry laboratory is described in which students isolate a wild yeast from environmental sources and characterize the strain for its potential in the brewing industry. In addition to providing valuable experience in important biochemical techniques, this study also illustrates key principles of bioprospecting, the search for new biological sources with potential commercial or scientific value. By foraging for yeast in the wild, students explore the microbial diversity of their local environment and potentially find untapped sources of yeast that produce novel flavors and aromas.

View Article and Find Full Text PDF

Real time quantitative reverse transcription PCR was used to monitor changes in apoptotic gene expression after treating cells with the DNA cross-linkers epichlorohydrin (ECH) and diepoxybutane (DEB). This article presents the data obtained from application of the comparative C method to the amplification of twelve apoptotic genes in human MCF10-A cells and eight genes in HUVEC cells. Further insight regarding the significance of these data can be found in "Cross-linking by epichlorohydrin and diepoxybutane correlates with cytotoxicity and leads to apoptosis in human leukemia (HL-60) cells" (Le et al.

View Article and Find Full Text PDF

The bifunctional alkylating agents epichlorohydrin (ECH) and diepoxybutane (DEB) have been linked to increased cancer risks in industrial workers. These compounds react with DNA and proteins, leading to genotoxic effects. We used the comet assay to monitor formation of cross-links in HL-60 cells treated with ECH, DEB, and the structurally related anti-cancer drug mechlorethamine (HN2).

View Article and Find Full Text PDF

DNA oligonucleotides containing site-specific N7-guanine monoadducts of cisplatin, diepoxybutane, and epichlorohydrin were used as templates for DNA synthesis by two bacterial DNA polymerases and human polymerase β. These polymerases were able to bypass the lesions effectively, although the efficiency was decreased, with inhibition increasing with the size of the lesion. Fidelity of incorporation was essentially unaltered, suggesting that N7-guanine monoadducts do not significantly contribute to the mutational spectra of these agents.

View Article and Find Full Text PDF

A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis.

View Article and Find Full Text PDF

The bifunctional alkylating agent 1,2,3,4-diepoxybutane (DEB) is thought to be a major contributor to the carcinogenicity of 1,3-butadiene, from which it is derived in vivo. DEB forms DNA interstrand cross-links primarily between distal deoxyguanosine residues at the duplex sequence 5'-GNC. In order for the short butanediol tether to span this distance, distortion of the DNA target has been postulated.

View Article and Find Full Text PDF

With the goal of elucidating the molecular and cellular mechanisms of chloroprene toxicity, we examined the potential DNA cross-linking of the bifunctional chloroprene metabolite, (1-chloroethenyl)oxirane (CEO). We used denaturing polyacrylamide gel electrophoresis to monitor the possible formation of interstrand cross-links by CEO within synthetic DNA duplexes. Our data suggest interstrand cross-linking at deoxyguanosine residues within 5'-GC and 5'-GGC sites, with the rate of cross-linking depending on pH (pH 5.

View Article and Find Full Text PDF

The bifunctional alkylating agents diepoxybutane (DEB) and epichlorohydrin (ECH) are linked to the elevated incidence of certain cancers among workers in the synthetic polymer industry. Both compounds form interstrand cross-links within duplex DNA, an activity suggested to contribute to their cytotoxicity. To assess the DNA targeting of these compounds in vivo, we assayed for damage within chicken erythro-progenitor cells at three different sites: one within mitochondrial DNA, one within expressed nuclear DNA, and one within unexpressed nuclear DNA.

View Article and Find Full Text PDF

Epichlorohydrin (ECH), an important industrial chemical, is a bifunctional alkylating agent with the potential to form DNA cross-links. Occupational exposure to this suspect carcinogen leads to chromosomal aberrations, and ECH has been shown previously to undergo reaction with DNA in vivo and in vitro. We used denaturing polyacrylamide gel electrophoresis to monitor the possible formation of interstrand cross-links within DNA oligomers by ECH and the related compound, epibromohydrin (EBH).

View Article and Find Full Text PDF

The bifunctional alkylating agent 1,2,3,4-diepoxybutane forms interstrand DNA-DNA cross-links between the N7 positions of deoxyguanosine residues on opposite strands of the duplex. For racemic diepoxybutane, these cross-links predominate within 5'-GNC/3'CNG sequences, where N is any nucleotide. We used denaturing polyacrylamide gel electrophoresis (dPAGE) to examine the role of stereochemistry in the cross-linking reaction, subjecting a restriction fragment to cross-linking with S,S-DEB, R,R-DEB, or meso-DEB.

View Article and Find Full Text PDF

Diepoxybutane, diepoxyoctane, and mechlorethamine are cytotoxic agents that induce interstrand cross-links between the N7 positions of deoxyguanosine residues on opposite strands of the DNA duplex preferentially at 5'-GNC sequences. We have systematically varied the identity of either the base 5' to the cross-linked deoxyguanosine residues or the intervening base pair to determine flanking sequence effects on cross-linking efficiency. We used synthetic DNA oligomers containing four 5'-N(1)GN(2)C sites that varied either N(1) or N(2).

View Article and Find Full Text PDF