Annu Rev Entomol
January 2023
Spotted lanternfly, (White), invaded the eastern United States in 2014 and has since caused economic and ecological disruption. In particular, spotted lanternfly has shown itself to be a significant pest of vineyards and ornamental plants and is likely to continue to spread to new areas. Factors that have contributed to its success as an invader include its wide host range and high mobility, which allow it to infest a wide range of habitats, including agricultural, urban, suburban, and managed and natural forested areas.
View Article and Find Full Text PDFThe effect of temperature on the rate of spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae), egg development was investigated for a population in Pennsylvania. Mean developmental duration (days ± SE) for egg hatch was evaluated at five constant temperatures of 19.9, 24.
View Article and Find Full Text PDFInvasive herbivores can have dramatic impacts in new environments by altering landscape composition, displacing natives, and causing plant decline and mortality. One of the most recent invasive insects in the United States, the spotted lanternfly (Lycorma delicatula), has the potential to cause substantial economic and environmental impacts in agriculture and forestry. Spotted lanternfly exhibits a broad host range, yet reports of late-season movement from the surrounding landscapes onto select tree species in suburban environments have been reported.
View Article and Find Full Text PDFSpotted lanternfly (SLF), Lycorma delicatula (Hemiptera: Fulgoridae) is an invasive phloem-feeding planthopper currently being quarantined in a 24 000 km area in eastern Pennsylvania, New Jersey, Maryland, and Delaware, with a second population under quarantine in a 46 km area in Virginia. Because this insect feeds on over 70 species of plants, it has the potential to impact a wide range of sectors, and as a result, there has been great public speculation that the economic impact of SLF could be severe. SLF is a large-bodied voracious feeder that reduces plant resources directly by feeding, and indirectly, from sooty mold that grows on its excrement and blocks photosynthesis.
View Article and Find Full Text PDFThe spittlebug family Cercopidae (Hemiptera: Auchenorrhyncha: Cicadomorpha: Cercopoidea) is distributed worldwide, with highest species diversity in the tropics. Several included species are economically important pests of major agricultural crops and cultivated pasture grasses. Taxonomically, Cercopidae is divided into two subfamilies: the paraphyletic Old World Cercopinae and the monophyletic New World Ischnorhininae.
View Article and Find Full Text PDFMicroorganisms are vital to environmental health, yet their association with disease often overshadows these benefits. Building citizen-science activities around the positive role of microorganisms and an understanding of their ubiquity can begin to dispel misconceptions while simultaneously engaging the public in research. Here, we describe a citizen-science microbiology project geared toward implementation in middle and high school classrooms.
View Article and Find Full Text PDFSkin microbes play a role in human body odour, health and disease. Compared with gut microbes, we know little about the changes in the composition of skin microbes in response to evolutionary changes in hosts, or more recent behavioural and cultural changes in humans. No studies have used sequence-based approaches to consider the skin microbe communities of gorillas and chimpanzees, for example.
View Article and Find Full Text PDFBackground: Members of the hemipteran suborder Auchenorrhyncha (commonly known as planthoppers, tree- and leafhoppers, spittlebugs, and cicadas) are unusual among insects known to harbor endosymbiotic bacteria in that they are associated with diverse assemblages of bacterial endosymbionts. Early light microscopic surveys of species representing the two major lineages of Auchenorrhyncha (the planthopper superfamily Fulgoroidea; and Cicadomorpha, comprising Membracoidea [tree- and leafhoppers], Cercopoidea [spittlebugs], and Cicadoidea [cicadas]), found that most examined species harbored at least two morphologically distinct bacterial endosymbionts, and some harbored as many as six. Recent investigations using molecular techniques have identified multiple obligate bacterial endosymbionts in Cicadomorpha; however, much less is known about endosymbionts of Fulgoroidea.
View Article and Find Full Text PDFLanternflies (Insecta: Hemiptera: Fulgoridae) are frequently used as examples of unusual morphological evolution, with some species (such as the peanut-headed bug, Fulgora laternaria Linnaeus) also ubiquitously cited as icons of tropical insect biodiversity. Despite that entomological notoriety, the phylogeny of this charismatic planthopper family has never before been studied. Presented here are the results of a phylogenetic investigation of Fulgoridae based on DNA nucleotide sequence data from five genetic loci (18S rDNA, 28S rDNA, histone 3, wingless, and cytochrome oxidase I).
View Article and Find Full Text PDFThe planthopper superfamily Fulgoroidea (Insecta: Hemiptera) comprises approximately 20 described insect families, depending on which classification is followed. Multiple competing hypotheses of fulgoroid phylogeny have been published, based on either morphological character coding or DNA sequence data; however, those hypotheses disagree in several key aspects regarding the evolution of planthoppers. The current paper seeks to test these hypotheses, including the Asche (Asche, M.
View Article and Find Full Text PDF