The spatial resolution of transmission Kikuchi diffraction (TKD) depends on experimental parameters such as atomic number, accelerating voltage, sample backtilt and thickness. In this work, the dependence of spatial resolution on these parameters is explored by using bilayered coarse-grained/nanocrystalline samples to determine the depth resolution. Digital image correlation of the Kikuchi patterns across grain boundaries is used to measure the lateral resolution.
View Article and Find Full Text PDFHighly integrated optoelectronic and photonic systems underpin the development of next-generation advanced optical and quantum communication technologies, which require compact, multiwavelength laser sources at the telecom band. Here, we report on-substrate vertical emitting lasing from ordered InGaAs/InP multi-quantum well core-shell nanowire array epitaxially grown on InP substrate by selective area epitaxy. To reduce optical loss and tailor the cavity mode, a new nanowire facet engineering approach has been developed to achieve controlled quantum well nanowire dimensions with uniform morphology and high crystal quality.
View Article and Find Full Text PDFThe application of atom probe tomography (APT) to frozen liquids is limited by difficulties in specimen preparation. Here, we report on the use of nanoporous Cu needles as a physical framework to hold water ice for investigation using APT. Nanoporous Cu needles are prepared by electropolishing and dealloying Cu-Mn matchstick precursors.
View Article and Find Full Text PDFThere has been an increasing interest in atom probe tomography (APT) to characterize hydrated and biological materials. A major benefit of APT compared to microscopy techniques more commonly used in biology is its combination of outstanding three-dimensional (3D) spatial resolution and mass sensitivity. APT has already been successfully used to characterize biominerals, revealing key structural information at the atomic scale, however there are many challenges inherent to the analysis of soft hydrated materials.
View Article and Find Full Text PDFKingham [(1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci116(2), 273-301] provided equations for the probability of observing higher charge states in atom probe tomography (APT) experiments.
View Article and Find Full Text PDFKesterite is an earth-abundant energy material with high predicted power conversion efficiency, making it a sustainable and promising option for photovoltaics. However, a large open circuit voltage V deficit due to non-radiative recombination at intrinsic defects remains a major hurdle, limiting device performance. Incorporating Ge into the kesterite structure emerges as an effective approach for enhancing performance by manipulating defects and morphology.
View Article and Find Full Text PDFHydrogen embrittlement reduces the durability of the structural steels required for the hydrogen economy. Understanding how hydrogen interacts with the materials plays a crucial role in managing the embrittlement problems. Theoretical models have indicated that carbon vacancies in metal carbide precipitates are effective hydrogen traps in steels.
View Article and Find Full Text PDFNanoscale small-volume metallic materials typically exhibit high strengths but often suffer from a lack of tensile ductility due to undesirable premature failure. Here, we report unusual room-temperature uniform elongation up to ~110% at a high flow stress of 0.6-1.
View Article and Find Full Text PDFThis study explores the feasibility of using lignosulfonate, a byproduct of the pulp and paper industry, to facilitate sludge anaerobic digestion. Biochemical methane potential assays revealed that the maximum methane production was achieved at 60 mg/g volatile solids (VS) lignosulfonate, 22.18 % higher than the control.
View Article and Find Full Text PDFThe CAMECA Invizo 6000 atom probe microscope uses ion optics that differ significantly from the local electrode atom probe (LEAP). It uses dual antiparallel deep ultraviolet lasers, a flat counter electrode, and a series of accelerating and decelerating lenses to increase the field-of-view of the specimen without reducing the mass resolving power. In this work we characterise the performance of the Invizo 6000 using three material case studies: a model Al-Mg-Si alloy, a commercially-available Ni-based superalloy, and a Zr alloy, using a combination of air and vacuum-transfer between instruments.
View Article and Find Full Text PDFIn the archetypal antiferroelectric PbZrO_{3}, antiparallel electric dipoles cancel each other, resulting in zero spontaneous polarization at the macroscopic level. Yet in actual hysteresis loops, the cancellation is rarely perfect and some remnant polarization is often observed, suggesting the metastability of polar phases in this material. In this work, using aberration-corrected scanning transmission electron microscopy methods on a PbZrO_{3} single crystal, we uncover the coexistence of the common antiferroelectric phase and a ferrielectric phase featuring an electric dipole pattern of ↓↑↓.
View Article and Find Full Text PDFWe report, for the first time, sub-4 nm mapping of donor : acceptor nanoparticle composition in eco-friendly colloidal dispersions for organic electronics. Low energy scanning transmission electron microscopy (STEM) energy dispersive X-ray spectroscopy (EDX) mapping has revealed the internal morphology of organic semiconductor donor : acceptor blend nanoparticles at the sub-4 nm level. A unique element was available for utilisation as a fingerprint element to differentiate donor from acceptor material in each blend system.
View Article and Find Full Text PDFHere we report the first atom probe study to reveal the atomic-scale composition of in vivo bone formed in a bioceramic scaffold (strontium-hardystonite-gahnite) after 12-month implantation in a large bone defect in sheep tibia. The composition of the newly formed bone tissue differs to that of mature cortical bone tissue, and elements from the degrading bioceramic implant, particularly aluminium (Al), are present in both the newly formed bone and in the original mature cortical bone tissue at the perimeter of the bioceramic implant. Atom probe tomography confirmed that the trace elements are released from the bioceramic and are actively transported into the newly formed bone.
View Article and Find Full Text PDFIn response to the requirements imposed by the COVID-19 pandemic in 2020, we developed a remote learning undergraduate workshop for 44 students at the University of Newcastle by embedding scanning electron microscope (SEM) images of (Peacock) spiders into the MyScope Explore environment. The workshop session had two main components: 1) to use the online MyScope Explore tool to virtually image scales with structural color and pigmented color on spiders; 2) to join a live SEM session via Zoom to image an actual spider. In previous years, the undergraduate university students attending this annual workshop would enter the Microscopy Facility at the University of Newcastle to image specimens with SEM; however, in 2020 the Microscopy Facility was closed to student visitors, and this virtual activity was developed in order to proceed with the educational event.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Atomic-scale information about the structural and compositional properties of novel semiconductor nanowires is essential to tailoring their properties for specific applications, but characterization at this length scale remains a challenging task. Here, quasi-1D InAs/InGaAs semiconductor nanowire arrays were grown by selective area epitaxy (SAE) using molecular beam epitaxy (MBE), and their subsequent properties were analyzed by a combination of atom probe tomography (APT) and aberration-corrected transmission electron microscopy (TEM). Results revealed the chemical composition of the outermost thin InAs layer, a fine variation in the indium content at the InAs/InGaAs interface, and lightly incorporated element tracing.
View Article and Find Full Text PDFHigh-performance and low-cost photocatalysts play the key role in achieving the large-scale solar hydrogen production. In this work, we report a liquid-exfoliation approach to prepare NiPS ultrathin nanosheets as a versatile platform to greatly improve the light-induced hydrogen production on various photocatalysts, including TiO, CdS, InZnS and CN. The superb visible-light-induced hydrogen production rate (13,600 μmol h g) is achieved on NiPS/CdS hetero-junction with the highest improvement factor (~1,667%) compared with that of pure CdS.
View Article and Find Full Text PDFPlastic deformation in ceramic materials is normally only observed in nanometre-sized samples. However, we have observed high levels of plasticity (>50% plastic strain) and excellent elasticity (6% elastic strain) in perovskite oxide Pb(InNb)O-Pb(MgNb)O-PbTiO, under compression along <100> pillars up to 2.1 μm in diameter.
View Article and Find Full Text PDFHydroxyapatite nanoparticles (HAP NPs) are important for medicine, bioengineering, catalysis, and water treatment. However, current understanding of the nanoscale phenomena that confer HAP NPs their many useful properties is limited by a lack of information about the distribution of the atoms within the particles. Atom probe tomography (APT) has the spatial resolution and chemical sensitivity for HAP NP characterization, but difficulties in preparing the required needle-shaped samples make the design of these experiments challenging.
View Article and Find Full Text PDFTransition-metal oxides with a strain effect have attracted immense interest as cathode materials for fuel cells. However, owing to the introduction of heterostructures, substrates, or a large number of defects during the synthesis of strain-bearing catalysts, not only is the structure-activity relationship complicated but also their performance is mediocre. In this study, a mode of strain introduction is reported.
View Article and Find Full Text PDFRevealing the position of materials with chemical selectivity at atomic scale within functional nanoparticles is essential to understand and control their performance and cutting-edge atom probe tomography is a powerful tool to undertake this task. In this paper, we demonstrate three effective methods to prepare the needle-shaped specimens required for atom probe tomography measurements from nanoparticles of different sizes and provide examples of how atom probe can be used to provide data that is critical to their functionality. Samples measured include lithium-ion batteries (LIBs) cathode nanoparticles (300 - 500 nm), nickel-doped silicon dioxide (Ni@SiO) catalytic nanoparticles (100 - 200 nm) and tin-doped copper (Sn@Cu) catalytic nanoparticles (<100 nm).
View Article and Find Full Text PDFOwing to dwindling fossil fuels reserves, the development of alternative renewable energy sources is globally important. Photocatalytic hydrogen (H ) evolution represents a practical and affordable alternative to convert sunlight into carbon-free H fuel. Recently, 2D/2D van der Waals heterostructures (vdWHs) have attracted significant research attention for photocatalysis.
View Article and Find Full Text PDFIn this study atom probe tomography was used to determine the implantation depth of four different plasma FIB ion species - xenon, argon, nitrogen, and oxygen - implanted at different acceleration voltages. It was found that lowering the beam energy reduces the implantation depth, but significant implantation was still observed for N, O and Ar at beam energies as low as 2 kV. Furthermore, nitrides and oxides were observed that were formed when using N and O.
View Article and Find Full Text PDF