To understand the molecular basis for variable sensitivity to the BH3 mimetic drug ABT-737, the abundance of Bcl-2 family members was assayed in a panel of small cell lung cancer cell lines whose sensitivity varied over a 2-log range. Elevated Noxa and Bcl-2 levels directly correlated with sensitivity to ABT-737, whereas Mcl-1 levels were similar in all cell lines tested regardless of sensitivity. Transgenically enforced expression of Noxa but not Bcl-2 resulted in increased sensitivity to ABT-737 in multiple cell lines.
View Article and Find Full Text PDFActivation of the insulin-like growth factor-1 receptor (IGF-1R) by IGF-1 and IGF-2 plays a prominent role in the growth and survival of small cell lung cancer (SCLC) by potently activating the PI3K-Akt signal transduction pathway, which is also an important factor in the resistance of SCLC to chemotherapy. A12 is a fully human monoclonal antibody directed against the human IGF-1R that does not cross-react with the insulin receptor. In this study we have utilized A12 to determine the effects of selective antibody-mediated blockade of the IGF-1R on SCLC cell lines.
View Article and Find Full Text PDFThe heat shock protein 90 (Hsp90) has a critical role in malignant transformation. Whereas its ability to maintain the functional conformations of mutant and aberrant oncoproteins is established, a transformation-specific regulation of the antiapoptotic phenotype by Hsp90 is poorly understood. By using selective compounds, we have discovered that small-cell lung carcinoma is a distinctive cellular system in which apoptosis is mainly regulated by Hsp90.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) is one of the most important mediators of tumor angiogenesis. In addition to hypoxia, peptide growth factors are known to regulate VEGF expression but the effect of stem cell factor (SCF), the ligand for c-Kit, on VEGF expression has not been characterized. We therefore studied the effect of SCF-mediated c-Kit activation on VEGF expression by the H526 small cell lung cancer (SCLC) cell line.
View Article and Find Full Text PDFPurpose: Insulin-like growth factor-I (IGF-I) is a potent growth factor for small cell lung cancer (SCLC) in both the autocrine and endocrine context. It also inhibits chemotherapy-induced apoptosis through activation of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway and we have previously shown that inhibition of this signaling pathway enhances sensitivity of SCLC cell lines to chemotherapy. The purpose of this study was to determine whether the novel IGF-I receptor (IGF-IR) kinase inhibitor, NVP-ADW742, sensitizes SCLC cell lines to etoposide and carboplatin, which are commonly used in the treatment of SCLC.
View Article and Find Full Text PDFSU5416 is a multi-targeted kinase inhibitor that potentially has the ability to directly block tumor growth by inhibiting Kit signaling, as well as blocking angiogenesis by inhibiting vascular endothelial growth factor receptor (VEGFR) signaling. Previous work has demonstrated that SU5416 efficiently blocks Kit-mediated growth of small cell lung cancer (SCLC) in vitro. To determine the drug's effect on in vivo growth of SCLC, we studied its activity, alone and in combination with carboplatin, in chemotherapy-resistant H526, and chemotherapy-sensitive H209 murine xenograft models.
View Article and Find Full Text PDFMol Cancer Ther
May 2004
Stem cell factor (SCF)/Kit and insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) autocrine loops play a prominent role in the growth of small cell lung cancer (SCLC). Previous data suggested that IGF-I protects cells from apoptosis induced by STI571, an efficient inhibitor of Kit signal transduction, by activating the critical phosphatidylinositol 3-kinase-Akt pathway. To determine if inhibition of IGF-IR signaling would be therapeutically relevant in SCLC, the activity of a novel kinase inhibitor of IGF-IR, NVP-ADW742 (Novartis Pharma AG, Basel, Switzerland), was characterized.
View Article and Find Full Text PDFPurpose: Accumulating evidence indicates that small cell lung cancer (SCLC) is defective in many of the regulatory mechanisms that control cell cycle progression. The purpose of this study was to determine the effects of flavopiridol, a pan-cyclin-dependent kinase inhibitor, on growth and apoptosis of SCLC cell lines.
Experimental Design: Cell growth was monitored using 3-(4,5dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide (MTT) and clonogenic assays.
A promising therapeutic alternative to inhibition of growth factor receptors is the inhibition of downstream signal transduction pathways. Such an approach may be especially important in tumors that can use signals from multiple growth factor receptors for growth and survival. Both stem cell factor (SCF) and insulin-like growth factor (IGF)-I, components of prominent small cell lung cancer (SCLC) autocrine loops, as well as FCS, can potently activate phosphatidylinositol 3-kinase (PI3K)-Akt signaling, albeit with different kinetics.
View Article and Find Full Text PDF