The range uncertainty in proton radiotherapy is a limiting factor to achieve optimum dose conformity to the tumour volume. Ionoacoustics is a promising approach forrange verification, which would allow to reduce the size of the irradiated volume relative to the tumour volume. The energy deposition of a pulsed proton beam leads to an acoustic pressure wave (ionoacoustics), the detection of which allows conclusion about the distance between the Bragg peak and the acoustic detector.
View Article and Find Full Text PDFThe energy deposited in a medium by a pulsed proton beam results in the emission of thermoacoustic waves, also called ionoacoustics (IA). The proton beam stopping position (Bragg peak) can be retrieved from a time-of-flight analysis (ToF) of IA signals acquired at different sensor locations (multilateration). This work aimed to assess the robustness of multilateration methods in proton beams at pre-clinical energies for the development of a small animal irradiator.
View Article and Find Full Text PDFIonizing radiation pulses delivered at ultra-high dose rates in emerging FLASH radiotherapy can result in high-intensity low-frequency thermoacoustic emissions that may have a biological impact. This study aims at providing insights into the thermoacoustic emissions expected during FLASH radiotherapy and their likelihood of inducing acoustic cavitation. The characteristics of acoustic waves induced by the energy deposition of a pulsed electron beam similar to previous pre-clinical FLASH radiotherapy studies and their propagation in murine head-like phantoms are investigated in-silico.
View Article and Find Full Text PDFPurpose: The Bragg peak located at the end of the ion beam range is one of the main advantages of ion beam therapy compared to X-Ray radiotherapy. However, verifying the exact position of the Bragg peak within the patient online is a major challenge. The goal of this work was to achieve submillimeter proton beam range verification for pulsed proton beams of an energy of up to 220 MeV using ionoacoustics for a clinically relevant dose deposition of typically 2 Gy per fraction by i) using optimal proton beam characteristics for ionoacoustic signal generation and ii) improved signal detection by correlating the signal with simulated filter templates.
View Article and Find Full Text PDFImage guidance and precise irradiation are fundamental to ensure the reliability of small animal oncology studies. Accurate positioning of the animal and the in-beam monitoring of the delivered radio-therapeutic treatment necessitate several imaging modalities. In the particular context of proton therapy with a pulsed beam, information on the delivered dose can be retrieved by monitoring the thermoacoustic waves resulting from the brief and local energy deposition induced by a proton beam (ionoacoustics).
View Article and Find Full Text PDFThe sharp spatial and temporal dose gradients of pulsed ion beams result in an acoustic emission (ionoacoustics), which can be used to reconstruct the dose distribution from measurements at different positions. The accuracy of range verification from ionoacoustic images measured with an ultrasound linear array configuration is investigated both theoretically and experimentally for monoenergetic proton beams at energies relevant for pre-clinical studies (20 and 22 MeV). The influence of the linear sensor array arrangement (length up to 4 cm and number of elements from 5 to 200) and medium properties on the range estimation accuracy are assessed using time-reversal reconstruction.
View Article and Find Full Text PDFThe characteristic depth dose deposition of ion beams, with a maximum at the end of their range (Bragg peak) allows for local treatment delivery, resulting in better sparing of the adjacent healthy tissues compared to other forms of external beam radiotherapy treatments. However, the optimal clinical exploitation of the favorable ion beam ballistic is hampered by uncertainties in the in vivo Bragg peak position. Ionoacoustics is based on the detection of thermoacoustic pressure waves induced by a properly pulsed ion beam (e.
View Article and Find Full Text PDFPrecision small animal radiotherapy research is a young emerging field aiming to provide new experimental insights into tumor and normal tissue models in different microenvironments, to unravel complex mechanisms of radiation damage in target and non-target tissues and assess efficacy of novel therapeutic strategies. For photon therapy, modern small animal radiotherapy research platforms have been developed over the last years and are meanwhile commercially available. Conversely, for proton therapy, which holds potential for an even superior outcome than photon therapy, no commercial system exists yet.
View Article and Find Full Text PDF