UCYN-A (or Atelocyanobacterium thalassa) has been recognized as a globally distributed, early stage, nitrogen-fixing organelle (the "nitroplast") of cyanobacterial origin present in the haptophyte alga . Although the nitroplast was recognized as UCYN-A2, not all sublineages of UCYN-A have been confirmed as nitroplasts, and full genomes are still lacking for several known sublineages. We investigated the differences between UCYN-A sublineages by sequencing and assembly of metagenomic sequences acquired from cultured biomass from NW Atlantic seawater, which yielded near-complete Metagenome Assembled Genomes (MAGs) corresponding to UCYN-A1, -A4, and the plastid of the UCYN-A4-associated Weekly time-series data paired with the recurrence of specific microbes in cultures used for metagenomics gave further insight into the microbial community associated with the algal/UCYN-A complex.
View Article and Find Full Text PDFCobalamin influences marine microbial communities because an exogenous source is required by most eukaryotic phytoplankton, and demand can exceed supply. Pseudocobalamin is a cobalamin analogue produced and used by most cyanobacteria but is not directly available to eukaryotic phytoplankton. Some microbes can remodel pseudocobalamin into cobalamin, but a scarcity of pseudocobalamin measurements impedes our ability to evaluate its importance for marine cobalamin production.
View Article and Find Full Text PDFThe evolution of intracellular organelles by endosymbiosis is considered rare. Two recent studies suggest that endosymbioses between nitrogen-fixing bacteria and eukaryotic algae are approaching levels of integration comparable to cellular organelles, helping to solve the problem of oceanic nitrogen limitation.
View Article and Find Full Text PDFThe high diversity and global distribution of heterotrophic bacterial diazotrophs (HBDs) in the ocean has recently become apparent. However, understanding the role these largely uncultured microorganisms play in marine N fixation poses a challenge due to their undefined growth requirements and the complex regulation of the nitrogenase enzyme. We isolated and characterized Thalassolituus haligoni, a member of a widely distributed clade of HBD belonging to the Oceanospirillales.
View Article and Find Full Text PDFUCYN-A (Cand. Atelocyanobacterium thalassa) has recently been recognized as a globally-distributed, early stage, nitrogen-fixing organelle (the 'nitroplast') of cyanobacterial origin present in select species of haptophyte algae (e.g.
View Article and Find Full Text PDFTrimming of sequencing reads is a pre-processing step that aims to discard sequence segments such as primers, adapters and low quality nucleotides that will interfere with clustering and classification steps. We evaluated the impact of trimming length of paired-end 16S and 18S rRNA amplicon reads on the ability to reconstruct the taxonomic composition and relative abundances of communities with a known composition in both even and uneven proportions. We found that maximizing read retention maximizes recall but reduces precision by increasing false positives.
View Article and Find Full Text PDFWe describe diazotrophs present during a 2015 GEOTRACES expedition through the Canadian Arctic Gateway (CAG) using nifH metabarcoding. In the less studied Labrador Sea, Bradyrhizobium sp. and Vitreoscilla sp.
View Article and Find Full Text PDFUCYN-A is a globally important nitrogen-fixing symbiotic microbe often found in colder regions and coastal areas where nitrogen fixation has been overlooked. We present a 3-year coastal Northwest Atlantic time series of UCYN-A by integrating oceanographic data with weekly and16 rRNA gene sequencing and quantitative PCR assays for UCYN-A ecotypes. High UCYN-A relative abundances dominated by A1 to A4 ecotypes reoccurred annually in the coastal Northwest Atlantic.
View Article and Find Full Text PDFUsing environmental DNA (eDNA) to monitor biodiversity in aquatic environments is becoming an efficient and cost-effective alternative to other methods such as visual and acoustic identification. Until recently, eDNA sampling was accomplished primarily through manual sampling methods; however, with technological advances, automated samplers are being developed to make sampling easier and more accessible. This paper describes a new eDNA sampler capable of self-cleaning and multi-sample capture and preservation, all within a single unit capable of being deployed by a single person.
View Article and Find Full Text PDFCobalamin availability can influence primary productivity and ecological interactions in marine microbial communities. The characterization of cobalamin sources and sinks is a first step in investigating cobalamin dynamics and its impact on productivity. Here, we identify potential cobalamin sources and sinks on the Scotian Shelf and Slope in the Northwest Atlantic Ocean.
View Article and Find Full Text PDFIn large areas of the ocean, iron concentrations are insufficient to promote phytoplankton growth. Numerous studies have been conducted to characterize the effect of iron on algae and how algae cope with fluctuating iron concentrations. Fertilization experiments in low-iron areas resulted primarily in diatom-dominated algal blooms, leading to laboratory studies on diatoms comparing low- and high-iron conditions.
View Article and Find Full Text PDFQuantifying the temporal change of bacterial communities is essential to understanding how both natural and anthropogenic pressures impact the functions of coastal marine ecosystems. Here we use weekly microbial DNA sampling across four years to show that bacterial phyla have distinct seasonal niches, with a richness peak in winter (i.e.
View Article and Find Full Text PDFThe planktonic diversity throughout the oceans is vital to ecosystem functioning and linked to environmental change. Plankton monitoring tools have advanced considerably with high-throughput in-situ digital cameras and genomic sequencing, opening new challenges for high-frequency observations of community composition, structure, and species discovery. Here, we combine multi-marker metabarcoding based on nuclear 18S (V4) and plastidial 16S (V4-V5) rRNA gene amplicons with a digital in-line holographic microscope to provide a synoptic diversity survey of eukaryotic plankton along the Newfoundland Shelf (Canada) during the winter transition phase of the North Atlantic bloom phenomenon.
View Article and Find Full Text PDFMicrobial observatories can track phytoplankton at frequencies that resolve monthly, seasonal, and multiyear trends in environmental change from short-lived events. Using 4-years of weekly flow cytometry along with chloroplast and cyanobacterial 16S rRNA gene sequence data from a time-series station in the coastal Northwest Atlantic (Bedford Basin, Nova Scotia, Canada), we analyzed temporal observations for globally-relevant genera (e.g.
View Article and Find Full Text PDFViruses saturate environments throughout the world and play key roles in microbial food webs, yet how viral activities affect dissolved organic matter (DOM) processing in natural environments remains elusive. We established a large-scale long-term macrocosm experiment to explore viral dynamics and their potential impacts on microbial mortality and DOM quantity and quality in starved and stratified ecosystems. High viral infection dynamics and the virus-induced cell lysis (6.
View Article and Find Full Text PDFOligotrophic ocean gyre ecosystems may be expanding due to rising global temperatures [1-5]. Models predicting carbon flow through these changing ecosystems require accurate descriptions of phytoplankton communities and their metabolic activities [6]. We therefore measured distributions and activities of cyanobacteria and small photosynthetic eukaryotes throughout the euphotic zone on a zonal transect through the South Pacific Ocean, focusing on the ultraoligotrophic waters of the South Pacific Gyre (SPG).
View Article and Find Full Text PDFBackground: Plankton are foundational to marine food webs and an important feature for characterizing ocean health. Recent developments in quantitative imaging devices provide in-flow high-throughput sampling from bulk volumes-opening new ecological challenges exploring microbial eukaryotic variation and diversity, alongside technical hurdles to automate classification from large datasets. However, a limited number of deployable imaging instruments have been coupled with the most prominent classification algorithms-effectively limiting the extraction of curated observations from field deployments.
View Article and Find Full Text PDFOil spills are among the most catastrophic events to marine ecosystems and current remediation techniques are not suitable for ecological restoration. Bioremediation approaches can take advantage of the activity of microorganisms with biodegradation capacity thus helping to accelerate the recovery of contaminated environments. The use of native microorganisms can increase the bioremediation efficiency since they have higher potential to survive in the natural environment while preventing unpredictable ecological impacts associated with the introduction of non-native organisms.
View Article and Find Full Text PDFNitrification is a central process of the aquatic nitrogen cycle that controls the supply of nitrate used in other key processes, such as phytoplankton growth and denitrification. Through time series observation and modeling of a seasonally stratified, eutrophic coastal basin, we demonstrate that physical dilution of nitrifying microorganisms by water column mixing can delay and decouple nitrification. The findings are based on a 4-y, weekly time series in the subsurface water of Bedford Basin, Nova Scotia, Canada, that included measurement of functional () and phylogenetic (16S rRNA) marker genes.
View Article and Find Full Text PDFMicrobial degradation of dissolved organic carbon (DOC) in aquatic environments can cause oxygen depletion, water acidification, and CO emissions. These problems are caused by labile DOC (LDOC) and not refractory DOC (RDOC) that resists degradation and is thus a carbon sink. For nearly a century, chemical oxygen demand (COD) has been widely used for assessment of organic pollution in aquatic systems.
View Article and Find Full Text PDFN-linked glycosylation is a posttranslational modification affecting protein folding and function. The N-linked glycosylation pathway in algae is poorly characterized, and further knowledge is needed to understand the cell biology of algae and the evolution of N-linked glycosylation. This study investigated the N-linked glycosylation pathway in Thalassiosira oceanica, an open ocean diatom adapted to survive at growth-limiting iron concentrations.
View Article and Find Full Text PDFFerredoxins are iron-sulfur proteins essential for a wide range of organisms because they are an electron transfer mediator involved in multiple metabolic pathways. In phytoplankton, these proteins are active in the mature chloroplasts, but the gene, encoding for ferredoxin, has been found either to be in the chloroplast genome or transferred to the nuclear genome as observed in the green algae and higher plant lineage. We experimentally determined the location of the gene in 12 strains of covering three species using DNA sequencing and qPCR assays.
View Article and Find Full Text PDFHeme is an iron-containing co-factor in hemoproteins. Heme concentrations are low (<1 pmol L) in iron limited phytoplankton in cultures and in the field. Here, we determined heme in marine particulate material (>0.
View Article and Find Full Text PDF