Publications by authors named "Julie L Hofstra"

While biocatalysis is increasingly incorporated into drug development pipelines, it is less commonly used in the early stages of drug discovery. By engineering a protein to produce a chiral motif with a derivatizable functional handle, biocatalysts can be used to help generate diverse building blocks for drug discovery. Here we show the engineering of two variants of nitric oxide dioxygenase (NOD) to catalyze the formation of - and diastereomers of a pinacolboronate-substituted cyclopropane which can be readily derivatized to generate diverse stereopure cyclopropane building blocks.

View Article and Find Full Text PDF

A Ni-catalyzed halogenation of enol triflates was developed and it enables the synthesis of a broad range of alkenyl iodides, bromides, and chlorides under mild reaction conditions. The reaction utilizes inexpensive, bench-stable Ni(OAc) ⋅4 H O as a precatalyst and proceeds at room temperature in the presence of sub-stoichiometric Zn and either 1,5-cyclooctadiene or 4-(N,N-dimethylamino)pyridine.

View Article and Find Full Text PDF

An asymmetric Ni-catalyzed reductive cross-coupling has been developed to prepare enantioenriched allylic silanes. This enantioselective reductive alkenylation proceeds under mild conditions and exhibits good functional group tolerance. The chiral allylic silanes prepared here undergo a variety of stereospecific transformations, including intramolecular Hosomi-Sakurai reactions, to set vicinal stereogenic centers with excellent transfer of chirality.

View Article and Find Full Text PDF

An enantioselective Ni-catalyzed cross-coupling of N-hydroxyphthalimide esters with vinyl bromides is reported. The reaction proceeds under mild conditions and uses tetrakis(N,N-dimethylamino)ethylene as a terminal organic reductant. Good functional group tolerance is demonstrated, with over 20 examples of reactions that proceed with >90% ee.

View Article and Find Full Text PDF

A series of 2'-arylbenzaldehyde oxime ethers were synthesized and shown to generate the corresponding phenanthridines upon irradiation in the presence of 9,10-dicyanoanthracene in acetonitrile. Mechanistic studies suggest that the oxidative cyclization reaction sequence is initiated by an electron transfer step followed by nucleophilic attack of the aryl ring onto the nitrogen of the oxime ether. A concave downward Hammett plot is presumably the result of a change in charge distribution in the radical cation species with strongly electron-donating substituents that yields a less electrophilic nitrogen atom and a decreased amount of cyclized product.

View Article and Find Full Text PDF