Publications by authors named "Julie L Calahan"

Magnesium stearate (MgSt) is a widely used pharmaceutical lubricant in tablet manufacturing. However, batch-to-batch variability in hydrate form and surface area can lead to inconsistency in tablet performance. In this work, several unique MgSt samples were studied: traditional monohydrate samples with high surface area, dihydrate forms with high and low surface area, and disordered forms with low and medium water content.

View Article and Find Full Text PDF

A mild, efficient and rapid protocol was developed for the deprotection of alcoholic TBDMS ethers using a recyclable, eco-friendly highly sulphated cellulose sulphate acid catalyst in methanol. This acid catalyst selectively cleaves alcoholic TBDMS ethers in bis-TBDMS ethers containing both alcoholic and phenolic TBDMS ether moieties.

View Article and Find Full Text PDF

We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of H and C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra.

View Article and Find Full Text PDF

Magnesium stearate is the salt of a complex mixture of fatty acids, with the majority being stearate and palmitate. It has multiple crystalline forms and, potentially, an amorphous form. Magnesium stearate is used in the pharmaceutical manufacturing industry as a powder lubricant, and typically is added at low levels (∼1%) during the manufacturing process and blended for a relatively short time (∼5 min).

View Article and Find Full Text PDF

Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.

View Article and Find Full Text PDF

Understanding the crystallization kinetics of an amorphous drug is critical for the development of an amorphous solid dispersion (ASD) formulation. This paper examines the phase separation and crystallization of the drug AMG 517 in ASDs of varying drug load at various conditions of temperature and relative humidity using isothermal microcalorimetry. ASDs of AMG 517 in hydroxypropyl methylcellulose acetate succinate (HPMC-AS) were manufactured using a Buchi 290 mini spray dryer system.

View Article and Find Full Text PDF