Background: Major depressive disorder (MDD) is characterized by sadness and anhedonia, but also physical symptoms such as changes in appetite and weight. Gut microbiota has been hypothesized to be involved in MDD through gut-brain axis signaling. Moreover, antidepressants display antibacterial properties in the gastrointestinal tract.
View Article and Find Full Text PDFAn association has been suggested between altered gut microbiota, and attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), respectively. Thus, we analyzed the gut microbiota composition in children and adolescents with or without these disorders and evaluated the systemic effects of these bacteria. We recruited study participants diagnosed with ADHD, ASD, and comorbid ADHD/ASD, while the control groups consisted both of siblings and non-related children.
View Article and Find Full Text PDFDifferences in gut microbiota composition have been observed in patients with major depressive disorder (MDD) compared to healthy individuals. Here, we investigated if faecal microbiota transplantation (FMT) from patients with MDD into rats could induce a depressive-like phenotype. We performed FMT from patients with MDD (FMT-MDD) and healthy individuals (FMT-Healthy) into male Flinders Sensitive Line (FSL) and Flinders Resistant Line (FRL) rats and assessed depressive-like behaviour.
View Article and Find Full Text PDFObjective: The etiology of major depressive disorder (MDD) is multi-factorial and has been associated with a perturbed gut microbiota. Thus, it is therefore of great importance to determine any variations in gut microbiota in patients with MDD.
Methods: A systematic literature search was conducted including original research articles based on gut microbiota studies performed in patients with MDD.
Purpose Of Review: Patients with diabetes mellitus (DM) are at increased risk of developing osteopathogenesis and skeletal fragility. The role of the gut microbiota in both DM and osteopathy is not fully explored and may be involved in the pathology of both diseases.
Recent Findings: Gut microbiota alterations have been observed in DM and osteopathogenic disorders as compared with healthy controls, such as significantly lower abundance of Prevotella and higher abundance of Lactobacillus, with a diminished bacterial diversity.
Characterization of the human gut microbiota has caused a paradigm shift in modern biomedical research. Maintenance of gut microbiota depends on mutual microbe-host interactions, which when disturbed can lead to dysbiosis. Dysbiosis has been associated with a variety of autoimmune and metabolic diseases.
View Article and Find Full Text PDFThe gut microbiota is believed to affect a wide variety of mental disorders, including depression. The hypothesis involves bacterial signalling to the host through metabolic, endocrinal, immunologic and neuronal pathways. Few studies of patients with depression have shown altered microbiota profiles and increased levels of systemic endotoxin, which can be detected by leucocytes and result in expression of cytokines.
View Article and Find Full Text PDF