With advances in digital stethoscopes, internet of things, signal processing and machine learning, chest sounds can be easily collected and transmitted to the cloud for remote monitoring and diagnosis. However, low quality of recordings complicates remote monitoring and diagnosis, particularly for neonatal care. This paper proposes a new method to objectively and automatically assess the signal quality to improve the accuracy and reliability of heart rate (HR) and breathing rate (BR) estimation from noisy neonatal chest sounds.
View Article and Find Full Text PDF