Publications by authors named "Julie Kaylor"

Continuous advances in genetic testing methodologies and an increased understanding of the genetic mechanisms of diseases have fueled genetic testing utilization across health care specialties. To our knowledge, national trends in the ordering of genetic testing have not been studied broadly across clinical indications, testing methodologies, and ordering provider specialties. We performed a retrospective analysis of 4,499 complete prior authorization requests for molecular genetic testing submitted to four regional health plans' commercial lines of business between May 1, 2019 and May 31, 2019.

View Article and Find Full Text PDF

Mitochondrial dysfunction lies behind many neurodegenerative disorders, owing largely to the intense energy requirements of most neurons. Such mitochondrial dysfunction may work through a variety of mechanisms, from direct disruption of the electron transport chain to abnormal mitochondrial biogenesis. Recently, we have identified biallelic mutations in the mitochondrial flavoprotein "ferredoxin reductase" (FDXR) gene as a novel cause of mitochondriopathy, peripheral neuropathy, and optic atrophy.

View Article and Find Full Text PDF
Article Synopsis
  • * A study of 72 participants provided detailed analysis of SAS, going beyond previous limited reports to identify key clinical and genetic characteristics.
  • * Major findings highlight severe speech delays, palate and dental abnormalities, and behavioral issues, which can aid healthcare providers in diagnosis and management, offering better support for affected families.
View Article and Find Full Text PDF

Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe-S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450.

View Article and Find Full Text PDF

While X-linked intellectual disability (XLID) syndromes pose a diagnostic challenge for clinicians, an increasing number of recognized disorders and their genetic etiologies are providing answers for patients and their families. The availability of clinical exome sequencing is broadening the ability to identify mutations in genes previously unrecognized as causing XLID. In recent years, the IQSEC2 gene, located at Xp11.

View Article and Find Full Text PDF

Coffin-Siris syndrome (CSS, MIM 135900), is a well-described, multiple congenital anomaly syndrome characterized by coarse facial features, hypertrichosis, sparse scalp hair, and hypo/aplastic digital nails and phalanges, typically of the 5th digits. Mutations in the BAF (SWI/SNF)-complex subunits (SMARCA4, SMARCE1, SMARCB1, SMARCA2, ARID1B, and ARID1A) have been shown to cause not only CSS, but also related disorders including Nicolaides-Baraitser (MIM 601358) syndrome and ARID1B-intellectual disability syndrome (MIM 614562). At least 200 individuals with CSS have been found to have a mutation in the BAF pathway.

View Article and Find Full Text PDF

We identified five unrelated individuals with significant global developmental delay and intellectual disability (ID), dysmorphic facial features and frequent microcephaly, and de novo predicted loss-of-function variants in chromosome alignment maintaining phosphoprotein 1 (CHAMP1). Our findings are consistent with recently reported de novo mutations in CHAMP1 in five other individuals with similar features. CHAMP1 is a zinc finger protein involved in kinetochore-microtubule attachment and is required for regulating the proper alignment of chromosomes during metaphase in mitosis.

View Article and Find Full Text PDF

Child abuse is a major public health concern that can explain a proportion of fractures in children. Osteogenesis imperfecta (OI) is the most common inherited syndrome that predisposes to skeletal fractures. We conducted a retrospective analysis of data from clinical, laboratory, and radiographic information from children evaluated for child abuse in which molecular testing for COL1A1 and COL1A2 genes was conducted.

View Article and Find Full Text PDF

We report five fetuses and a child from three families who shared a phenotype comprising cerebral ventriculomegaly and echogenic kidneys with histopathological findings of congenital nephrosis. The presenting features were greatly elevated maternal serum alpha-fetoprotein (MSAFP) or amniotic fluid alpha-fetoprotein (AFAFP) levels or abnormalities visualized on ultrasound scan during the second trimester of pregnancy. Exome sequencing revealed deleterious sequence variants in Crumbs, Drosophila, Homolog of, 2 (CRB2) consistent with autosomal-recessive inheritance.

View Article and Find Full Text PDF

We describe the case of a male newborn with ring chromosome 13 found to have dysmorphic features, growth retardation, imperforate anus, and ambiguous genitalia. An initial karyotype showed 46,XY,r(13)(p13q34) in the 30 cells analyzed. SNP microarray from peripheral blood revealed not only an 8.

View Article and Find Full Text PDF