The scattering dynamics leading to the formation of Cl (2P(3/2)) and Cl* (2P(1/2)) products of the CH(3)+HCl reaction (at a mean collision energy
Rotational state distributions and state-selected CM-frame angular distributions were measured for HCl (v' = 0, j') products from the reaction of Cl-atoms with tetramethylsilane (TMS) under single collision conditions at a collision energy, E(coll), of 8.2 +/- 2.0 kcal mol(-1).
View Article and Find Full Text PDFDirect current slice velocity map ion images of the HCl(nu' = 0, J') products from the photoinitiated reactions of ground state Cl atoms with ethane, oxirane (c-C2H4O), and oxetane (c-C3H6O), at respective mean collision energies of 5.5, 6.5, and 7.
View Article and Find Full Text PDFLAB-frame velocity distributions of Cl-atoms produced in the photoinitiated reaction of CH(3) radicals with HCl have been measured for both the ground Cl ((2)P(3/2)) and excited Cl* ((2)P(1/2)) spin-orbit states using a DC slice velocity-map ion imaging technique. The similarity of these distributions, as well as the average internal excitation of methane co-products for both Cl and Cl* pathways, suggest that all the reactive flux proceeds through the same transition state on the ground potential energy surface (PES) and that the couplings which promote nonadiabatic transitions to the excited PES correlating to Cl* occur later in the exit channel, beyond the TS region. The nature of these couplings is discussed in light of initial vibrational excitation of CH(3) radicals as well as previously reported nonadiabatic reactivity in other polyatomic molecule reactions.
View Article and Find Full Text PDFMultiply charged anions (MCAs) represent highly energetic species in the gas phase but can be stabilized through formation of molecular clusters with solvent molecules or counterions. We explore the intramolecular stabilization of excess negative charge in gas-phase MCAs by probing the intrinsic stability of the [adenosine 5'-triphosphate-2H](2-) ([ATP-2H](2-)), [adenosine 5'-diphosphate-2H](2-) ([ADP-2H](2-)), and H(3)P(3)O(10)(2-) dianions and their protonated monoanionic analogues. The relative activation barriers for decay of the dianions via electron detachment or ionic fragmentation are investigated using resonance excitation of ions isolated within a quadrupole trap.
View Article and Find Full Text PDFA series of recent experimental and computational studies has explored how the dynamics of hydrogen abstraction from organic molecules are affected by the presence of functional groups in the molecule and by basic structural motifs such as strained ring systems. Comparisons drawn between reactions of Cl atoms with alkanes such as ethane, Cl + CH3CH3--> HCl + CH3CH2, which serve as benchmark systems, and with functionalized molecules such as alcohols, amines, and alkyl halides, Cl + CH3X --> HCl + CH2X (X = OH, NH2, halogen, etc.) expose a wealth of mechanistic detail.
View Article and Find Full Text PDFNonadiabatic dynamics in the title reaction have been investigated by 2+1 REMPI detection of the Cl(2P(3/2)) and Cl*(2P(1/2)) products. Reaction was initiated by photodissociation of CH(3)I at 266 nm within a single expansion of a dilute mixture of CH(3)I and HCl in argon, giving a mean collision energy of 7800 cm(-1) in the center-of-mass frame. Significant production of Cl* was observed, with careful checks made to ensure that no additional photochemical or inelastic scattering sources of Cl* perturbed the measurements.
View Article and Find Full Text PDF