Publications by authors named "Julie Hollien"

Huntington's disease is characterized by accumulation of the aggregation-prone mutant Huntingtin (mHTT) protein. Here, we show that expression of exon 1 of mHTT in mouse cultured cells activates IRE1, the transmembrane sensor of stress in the endoplasmic reticulum, leading to degradation of the mRNA and repositioning of lysosomes and late endosomes toward the microtubule organizing center. Overriding degradation results in excessive accumulation of mHTT aggregates in both cultured cells and primary neurons.

View Article and Find Full Text PDF

After axon outgrowth and synapse formation, the nervous system transitions to a stable architecture. In C. elegans, this transition is marked by the appearance of casein kinase 1δ (CK1δ) in the nucleus.

View Article and Find Full Text PDF

Cells respond to stress in the ER by initiating the widely conserved unfolded protein response. Activation of the ER transmembrane nuclease IRE1 leads to the degradation of specific mRNAs, but how this pathway affects the ability of cells to recover from stress is not known. Here, we show that degradation of the mRNA encoding biogenesis of lysosome-related organelles 1 subunit 1 () leads to the repositioning of late endosomes (LEs)/lysosomes to the microtubule-organizing center in response to stress in mouse cells.

View Article and Find Full Text PDF

Disruption in endoplasmic reticulum (ER) function, termed ER stress, occurs in many diseases, including neurodegenerative disorders, diabetes, and cancer. Cells respond to ER stress with the unfolded protein response (UPR), which triggers a broad transcriptional program to restore and enhance ER function. Here, we found that ER stress up-regulates the mRNA encoding the developmentally regulated transcriptional repressor hairy and enhancer of split 1 (), in a variety cell types.

View Article and Find Full Text PDF

The nonsense-mediated mRNA decay (NMD) pathway functions to degrade both abnormal and wild-type mRNAs. NMD is essential for viability in most organisms, but the molecular basis for this requirement is unknown. Here we show that a single, conserved NMD target, the mRNA coding for the stress response factor growth arrest and DNA-damage inducible 45 (GADD45) can account for lethality in Drosophila lacking core NMD genes.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress occurs when misfolded proteins overwhelm the capacity of the ER, resulting in activation of the unfolded protein response (UPR). Ire1, an ER transmembrane nuclease and conserved transducer of the UPR, cleaves the mRNA encoding the transcription factor Xbp1 at a dual stem-loop (SL) structure, leading to Xbp1 splicing and activation. Ire1 also cleaves other mRNAs localized to the ER membrane through regulated Ire1-dependent decay (RIDD).

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress results from an imbalance between the load of proteins entering the secretory pathway and the ability of the ER to fold and process them. The response to ER stress is mediated by a collection of signaling pathways termed the unfolded protein response, which plays important roles in development and disease. Here we show that in Drosophila melanogaster S2 cells, ER stress induces a coordinated change in the expression of genes involved in carbon metabolism.

View Article and Find Full Text PDF

The ability to fluorescently label specific RNA sequences is of significant utility for both in vitro and live cell applications. Currently, most RNA labeling methods utilize RNA-nucleic acid or RNA-protein molecular recognition. However, in the search for improved RNA labeling methods, harnessing the small-molecule recognition capabilities of RNA is rapidly emerging as a promising alternative.

View Article and Find Full Text PDF

Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a mRNA degradation pathway that regulates a significant portion of the transcriptome. The expression levels of numerous genes are known to be altered in NMD mutants, but it is not known which of these transcripts is a direct pathway target. Here, we present the first genome-wide analysis of direct NMD targeting in an intact animal.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is a collection of pathways that maintains the protein secretory pathway during the many physiological and pathological conditions that cause stress in the endoplasmic reticulum (ER). The UPR is mediated in part by Ire1, an ER transmembrane kinase and endoribonuclease that is activated when misfolded proteins accumulate in the ER. Ire1's nuclease initiates the cytosolic splicing of the mRNA encoding X-box binding protein (Xbp1), a potent transcription factor that then upregulates genes responsible for restoring ER function.

View Article and Find Full Text PDF

The unfolded protein response (UPR) is a network of signaling pathways that responds to stress in the endoplasmic reticulum (ER). The general output of the UPR is to upregulate genes involved in ER function, thus restoring and/or increasing the capacity of the ER to fold and process proteins. In parallel, many organisms have mechanisms for limiting the load on the ER by attenuating translation or degrading ER-targeted mRNAs.

View Article and Find Full Text PDF

Localization of both mRNAs and mRNA decay factors to internal membranes of eukaryotic cells provides a means of coordinately regulating mRNAs with common functions as well as coupling organelle function to mRNA turnover. The classic mechanism of mRNA localization to membranes is the signal sequence-dependent targeting of mRNAs encoding membrane and secreted proteins to the cytoplasmic surface of the endoplasmic reticulum. More recently, however, mRNAs encoding proteins with cytosolic or nuclear functions have been found associated with various organelles, in many cases through unknown mechanisms.

View Article and Find Full Text PDF

Ire1 is an endoplasmic reticulum (ER) transmembrane protein that senses disturbances in protein folding homeostasis and contributes to a multifaceted response to stress. The nuclease activity of Ire1, in addition to splicing the mRNA encoding the transcription factor Xbp1, mediates mRNA degradation in response to ER stress through a pathway termed regulated Ire1-dependent decay (RIDD). We previously showed that ER targeting of substrates is necessary for RIDD; in this paper, we show that ER localization is also sufficient to induce decay in a normally unaffected mRNA.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) controls many important aspects of cellular function, including processing of secreted and membrane proteins, synthesis of membranes, and calcium storage. Maintenance of ER function is controlled through a network of signaling pathways collectively known as the unfolded protein response (UPR). The UPR balances the load of incoming proteins with the folding capacity of the ER and allows cells to adapt to situations that disrupt this balance.

View Article and Find Full Text PDF

Maintenance of endoplasmic reticulum (ER) function is achieved in part through Ire1 (inositol-requiring enzyme 1), a transmembrane protein activated by protein misfolding in the ER. The cytoplasmic nuclease domain of Ire1 cleaves the messenger RNA (mRNA) encoding XBP-1 (X-box-binding protein 1), enabling splicing and production of this active transcription factor. We recently showed that Ire1 activation independently induces the rapid turnover of mRNAs encoding membrane and secreted proteins in Drosophila melanogaster cells through a pathway we call regulated Ire1-dependent decay (RIDD).

View Article and Find Full Text PDF

Eukaryotic mRNAs are subject to quality control mechanisms that degrade defective mRNAs. In yeast, mRNAs with stalls in translation elongation are targeted for endonucleolytic cleavage by No-Go decay (NGD). The cleavage triggered by No-Go decay is dependent on Dom34p and Hbs1p, and Dom34 has been proposed to be the endonuclease responsible for mRNA cleavage.

View Article and Find Full Text PDF

The unfolded protein response (UPR) allows the endoplasmic reticulum (ER) to recover from the accumulation of misfolded proteins, in part by increasing its folding capacity. Inositol-requiring enzyme-1 (IRE1) promotes this remodeling by detecting misfolded ER proteins and activating a transcription factor, X-box-binding protein 1, through endonucleolytic cleavage of its messenger RNA (mRNA). Here, we report that IRE1 independently mediates the rapid degradation of a specific subset of mRNAs, based both on their localization to the ER membrane and on the amino acid sequence they encode.

View Article and Find Full Text PDF

In order to examine how the stabilization of thermophilic proteins affects their folding, we have characterized the folding process of Thermus thermophilus ribonuclease H using circular dichroism, fluorescence, and pulse-labeling hydrogen exchange. Like its homolog from Escherichia coli, this thermophilic protein populates a partially folded kinetic intermediate within the first few milliseconds of folding. The structure of this intermediate is similar to that of E.

View Article and Find Full Text PDF