Publications by authors named "Julie Guzzo"

Recent evidence indicates considerable cross-talk between genome maintenance and cell integrity control pathways. The RNA recognition motif (RRM)- and SQ/TQ cluster domain (SCD)-containing protein Mdt1 is required for repair of 3'-blocked DNA double-strand breaks (DSBs) and efficient recombinational maintenance of telomeres in budding yeast. Here we show that deletion of MDT1 (PIN4/YBL051C) leads to severe synthetic sickness in the absence of the genes for the central cell integrity MAP kinases Bck1 and Slt2/Mpk1.

View Article and Find Full Text PDF

Insulators bind transcription factors and use chromatin remodellers and modifiers to mediate insulation. In this report, we identified proteins required for the efficient formation and maintenance of a specialized chromatin structure at the yeast tRNA insulator. The histone acetylases, SAS-I and NuA4, functioned in insulation, independently of tRNA and did not participate in the formation of the hypersensitive site at the tRNA.

View Article and Find Full Text PDF

Background: Tra1 is an essential 437-kDa component of the Saccharomyces cerevisiae SAGA/SLIK and NuA4 histone acetyltransferase complexes. It is a member of a group of key signaling molecules that share a carboxyl-terminal domain related to phosphatidylinositol-3-kinase but unlike many family members, it lacks kinase activity. To identify genetic interactions for TRA1 and provide insight into its function we have performed a systematic genetic array analysis (SGA) on tra1SRR3413, an allele that is defective in transcriptional regulation.

View Article and Find Full Text PDF

Tra1 is an essential component of the Saccharomyces cerevisiae SAGA and NuA4 complexes. Using targeted mutagenesis, we identified residues within its C-terminal phosphatidylinositol-3-kinase (PI3K) domain that are required for function. The phenotypes of tra1-P3408A, S3463A, and SRR3413-3415AAA included temperature sensitivity and reduced growth in media containing 6% ethanol or calcofluor white or depleted of phosphate.

View Article and Find Full Text PDF

Accurate chromosome segregation requires the execution and coordination of many processes during mitosis, including DNA replication, sister chromatid cohesion, and attachment of chromosomes to spindle microtubules via the kinetochore complex. Additional pathways are likely involved because faithful chromosome segregation also requires proteins that are not physically associated with the chromosome. Using kinetochore mutants as a starting point, we have identified genes with roles in chromosome stability by performing genome-wide screens employing synthetic genetic array methodology.

View Article and Find Full Text PDF