The genetic architecture of traits under selection has important consequences for the response to selection and potentially for population viability. Early QTL mapping studies in wild populations have reported loci with large effect on trait variation. However, these results are contradicted by more recent genome-wide association analyses, which strongly support the idea that most quantitative traits have a polygenic basis.
View Article and Find Full Text PDFIn natural populations, quantitative traits seldom show short-term evolution at the rate predicted by evolutionary models. Resolving this "paradox of stasis" is a key goal in evolutionary biology, as it directly challenges our capacity to predict evolutionary change. One particularly promising hypothesis to explain the lack of evolutionary responses in a key offspring trait, body weight, is that positive selection on juveniles is counterbalanced by selection against maternal investment in offspring growth, given that reproduction is costly for the mothers.
View Article and Find Full Text PDFMaternal effects are ubiquitous. Yet, the pathways through which maternal effects occur in wild mammals remain largely unknown. We hypothesise that maternal immune transfer is a key mechanism by which mothers can affect their offspring fitness, and that individual variation in maternally derived antibodies mainly depends on a mother's characteristics and the environmental conditions she experiences.
View Article and Find Full Text PDFMaternal effects, either environmental or genetic in origin, are an underappreciated source of phenotypic variance in natural populations. Maternal genetic effects have the potential to constrain or enhance the evolution of offspring traits depending on their magnitude and their genetic correlation with direct genetic effects. We estimated the maternal effect variance and its genetic component for 12 traits expressed over the life history in a pedigreed population of wild red deer (morphology, survival/longevity, breeding success).
View Article and Find Full Text PDFMany theoretical models predict when genetic evolution and phenotypic plasticity allow adaptation to changing environmental conditions. These models generally assume stabilizing selection around some optimal phenotype. We however often ignore how optimal phenotypes change with the environment, which limit our understanding of the adaptive value of phenotypic plasticity.
View Article and Find Full Text PDFIn species with long-distance dispersal capacities and inhabiting a large ecological niche, local selection and gene flow are expected to be major evolutionary forces affecting the genetic adaptation of natural populations. Yet, in species such as trees, evidence of microgeographic adaptation and the quantitative assessment of the impact of gene flow on adaptive genetic variation are still limited. Here, we used extensive genetic and phenotypic data from European beech seedlings collected along an elevation gradient, and grown in a common garden, to study the signature of selection on the divergence of eleven potentially adaptive traits, and to assess the role of gene flow in resupplying adaptive genetic variation.
View Article and Find Full Text PDFInterindividual variation in fecundities has major consequences on population evolutionary potential, through genetic drift and selection. Using two spatially explicit mating models that analyse the genotypes of seeds and seedlings, we investigated the variation of male and female fecundities within and among three European beech (Fagus sylvatica) stands situated along an altitudinal gradient. Female and male individual fecundity distributions were both skewed in this monoecious species, and we found a higher variance in female as compared to male fecundities.
View Article and Find Full Text PDFStudies addressing the variation of mating system between plant populations rarely account for the variability of these parameters between individuals within populations, although this variability is often non-negligible. Here, we propose a new direct method based on paternity analyses (Mixed Effect Mating Model) to estimate individual migration (mi ) and selfing rates (si ) together with the pollen dispersal kernel. Using this method and the KINDIST approach, we investigated the variation of mating system parameters within and between three populations of Fagus sylvatica along an elevational gradient.
View Article and Find Full Text PDF