Publications by authors named "Julie Fudge"

A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons and likely supports local neuronal maturation and emerging synaptogenesis.

View Article and Find Full Text PDF

Objective: Theories of amygdala function are central to our understanding of psychiatric and neurodevelopmental disorders. However, limited knowledge of the molecular and cellular composition of the amygdala impedes translational research aimed at developing new treatments and interventions. The aim of this study was to characterize and compare the composition of amygdala cells to help bridge the gap between preclinical models and human psychiatric and neurodevelopmental disorders.

View Article and Find Full Text PDF

Unlabelled: A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the presence of immature neurons in the paralaminar nucleus of the amygdala in macaques during different developmental stages and under varying maternal conditions.
  • It finds that adolescent macaques have fewer immature neurons and more mature neurons compared to infants, and suggests that some neurons exit the PL as they mature.
  • Maternal separation in infant macaques does not affect neuron counts but correlates with changes in TBR1 mRNA levels, indicating that stress may hinder the maturation of these neurons.
View Article and Find Full Text PDF

In human and nonhuman primates, the amygdala paralaminar nucleus (PL) contains immature neurons. To explore the PL’s potential for cellular growth during development, we compared PL cells in 1) infant and adolescent macaques (control, maternally-reared), and in 2) infant macaques that experienced separation from their mother in the first month of life. In maternally-reared animals, the adolescent PL had fewer immature neurons, more mature neurons, and larger immature soma volumes compared to infant PL.

View Article and Find Full Text PDF

The central extended amygdala (CEA) and ventral pallidum (VP) are involved in diverse motivated behaviors based on rodent models. These structures are conserved, but expanded, in higher primates, including human. Corticotropin releasing factor (CRF), a canonical "stress molecule" associated with the CEA and VP circuitry across species, is dynamically regulated by stress and drugs of abuse and misuse.

View Article and Find Full Text PDF

The ventral midbrain is the primary source of dopamine- (DA) expressing neurons in most species. GABA-ergic and glutamatergic cell populations are intermixed among DA-expressing cells and purported to regulate both local and long-range dopamine neuron activity. Most work has been conducted in rodent models, however due to evolutionary expansion of the ventral midbrain in primates, the increased size and complexity of DA subpopulations warrants further investigation.

View Article and Find Full Text PDF

The subgenual (sgACC) and perigenual (pgACC) anterior cingulate are important afferents of the amygdala, with different cytoarchitecture, connectivity, and function. The sgACC is associated with arousal mechanisms linked to salient cues, whereas the pgACC is engaged in conflict decision-making, including in social contexts. After placing same-size, small volume tracer injections into sgACC and pgACC of the same hemisphere in male macaques, we examined anterogradely labeled fiber distribution to understand how these different functional systems communicate in the main amygdala nuclei at both mesocopic and cellular levels.

View Article and Find Full Text PDF

Background: Children exhibiting extreme anxious temperament (AT) are at an increased risk for developing anxiety and depression. Our previous mechanistic and neuroimaging work in young rhesus monkeys linked the central nucleus of the amygdala to AT and its underlying neural circuit.

Methods: Here, we used laser capture microscopy and RNA sequencing in 47 young rhesus monkeys to investigate AT's molecular underpinnings by focusing on neurons from the lateral division of the central nucleus of the amygdala (CeL).

View Article and Find Full Text PDF

Objective: Anorexia nervosa has the highest mortality rate of any psychiatric condition, yet the pathophysiology of this disorder and its primary symptom, extreme dietary restriction, remains poorly understood. In states of hunger relative to satiety, the rewarding value of food stimuli normally increases to promote eating, yet individuals with anorexia nervosa avoid food despite emaciation. This study's aim was to examine potential neural insensitivity to these effects of hunger in anorexia nervosa.

View Article and Find Full Text PDF

A combination of invasive and non-invasive techniques has allowed researchers to take a closer look at the two major neural pathways that connect the amygdala and the prefrontal cortex.

View Article and Find Full Text PDF

Alterations in central extended amygdala (EAc) function have been linked to anxiety, depression, and anxious temperament (AT), the early-life risk to develop these disorders. The EAc is composed of the central nucleus of the amygdala (Ce), the bed nucleus of the stria terminalis (BST), and the sublenticular extended amygdala (SLEA). Using a non-human primate model of AT and multimodal neuroimaging, the Ce and the BST were identified as key AT-related regions.

View Article and Find Full Text PDF

Individuals with bulimia nervosa (BN) engage in episodes of binge eating, marked by loss of control and eating despite fullness. Does altered reward and metabolic state contribute to BN pathophysiology? Normally, hunger increases (and satiety decreases) reward salience to regulate eating. We investigated whether BN is associated with an abnormal response in a neural circuit involved in translating taste signals into motivated behavior, when hungry and fed.

View Article and Find Full Text PDF

The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior.

View Article and Find Full Text PDF

Early parental loss is associated with social-emotional dysregulation and amygdala physiologic changes. Previously, we examined whole amygdala gene expression in infant monkeys exposed to early maternal deprivation. Here, we focus on an amygdala region with immature neurons at birth: the paralaminar nucleus (PL).

View Article and Find Full Text PDF

Background: Nonhuman primate models are critical for understanding mechanisms underlying human psychopathology. We established a nonhuman primate model of anxious temperament (AT) for studying the early-life risk to develop anxiety and depression. Studies have identified the central nucleus of the amygdala (Ce) as an essential component of AT's neural substrates.

View Article and Find Full Text PDF

The lateral division of the bed nucleus of the stria terminalis (BSTL) and central nucleus of the amygdala (Ce) form the two poles of the 'central extended amygdala', a theorized subcortical macrostructure important in threat-related processing. Our previous work in nonhuman primates, and humans, demonstrating strong resting fMRI connectivity between the Ce and BSTL regions, provides evidence for the integrated activity of these structures. To further understand the anatomical substrates that underlie this coordinated function, and to investigate the integrity of the central extended amygdala early in life, we examined the intrinsic connectivity between the Ce and BSTL in non-human primates using ex vivo neuronal tract tracing, and in vivo diffusion-weighted imaging and resting fMRI techniques.

View Article and Find Full Text PDF

Recent studies show that higher-order appetitive neural circuitry may contribute to restricted eating in anorexia nervosa (AN) and overeating in bulimia nervosa (BN). The purpose of this study was to determine whether sensitization effects might underlie pathologic eating behavior when a taste stimulus is administered repeatedly. Recovered AN (RAN, n=14) and BN (RBN, n=15) subjects were studied in order to avoid the confounding effects of altered nutritional state.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST), a portion of the "extended amygdala," is implicated in the pathophysiology of anxiety and addiction disorders. Its small size and connection to other small regions prevents standard imaging techniques from easily capturing it and its connectivity with confidence. Seed-based resting state functional connectivity is an established method for mapping functional connections across the brain from a region of interest.

View Article and Find Full Text PDF

The central extended amygdala is an evolutionarily conserved set of interconnected brain regions that play an important role in threat processing to promote survival. Two core components of the central extended amygdala, the central nucleus of the amygdala (Ce) and the lateral bed nucleus of the stria terminalis (BST) are highly similar regions that serve complimentary roles by integrating fear- and anxiety-relevant information. Survival depends on the ability of the central extended amygdala to rapidly integrate and respond to threats that vary in their immediacy, proximity, and characteristics.

View Article and Find Full Text PDF

Background: Hunger enhances sensitivity to reward, yet individuals with anorexia nervosa (AN) are not motivated to eat when starved. This study investigated brain response to rewards during hunger and satiated states to examine whether diminished response to reward could underlie food restriction in AN.

Methods: Using a delay discounting monetary decision task known to discriminate brain regions contributing to processing of immediate rewards and cognitive control important for decision making regarding future rewards, we compared 23 women remitted from AN (RAN group; to reduce the confounding effects of starvation) with 17 healthy comparison women (CW group).

View Article and Find Full Text PDF

Adults recovered from Anorexia nervosa (AN) have altered reward modulation within striatal limbic regions associated with the emotional significance of stimuli, and executive regions concerned with planning and consequences. We hypothesized that adolescents with AN would show similar disturbed reward modulation within the striatum and the anterior cingulate cortex, a region connected to the striatum and involved in reward-guided action selection. Using functional magnetic resonance imaging, twenty-two adolescent females (10 restricting-type AN, 12 healthy volunteers) performed a monetary guessing task.

View Article and Find Full Text PDF

The prefrontal and insula cortex, amygdala, and striatum are key regions for emotional processing, yet the amygdala's role as an interface between the cortex and striatum is not well understood. In the nonhuman primate (Macaque fascicularis), we analyzed a collection of bidirectional tracer injections in the amygdala to understand how cortical inputs and striatal outputs are organized to form integrated cortico-amygdala-striatal circuits. Overall, diverse prefrontal and insular cortical regions projected to the basal and accessory basal nuclei of the amygdala.

View Article and Find Full Text PDF