Publications by authors named "Julie Ferreira de Carvalho"

The Asteraceae is the largest angiosperm family with more than 25,000 species. Individual studies have shown that and transcription factors are regulators of the development and symmetry of flowers, contributing to their iconic flower-head (capitulum) and floret. However, a systematic study of and genes across the Asteraceae is lacking.

View Article and Find Full Text PDF

Glucosinolate (GLS) and phenolic contents in contribute to biotic and abiotic stress responses. Breeding crop accessions harboring agroecologically relevant metabolic profiles require a characterization of the chemical diversity in germplasm. This work investigates the diversity of specialized metabolites in 281 accessions of .

View Article and Find Full Text PDF
Article Synopsis
  • Meiosis drives genetic diversity in sexual organisms, but recombination is tightly regulated, mostly occurring in areas with low DNA methylation.
  • Researchers studied two Brassica napus hybrids to identify large regions lacking recombination and explored the role of DNA methylation and structural variations in this absence.
  • Findings suggest that hypermethylated or inverted regions can hinder recombination and may affect important agronomic traits, highlighting the need for breeders to consider these factors when combining beneficial alleles in crop varieties.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used the Brassica species to replicate the development of a new allopolyploid by creating and selecting euploid variants over eight generations through various genetic backgrounds and polyploid formation methods.
  • * The study found that after recurrent selection, the occurrence of aneuploid offspring significantly decreased, improving genome stability and fertility, while also revealing how genetic background and cytoplasmic origin influenced the outcomes.
View Article and Find Full Text PDF

Background: The combination of long reads and long-range information to produce genome assemblies is now accepted as a common standard. This strategy not only allows access to the gene catalogue of a given species but also reveals the architecture and organization of chromosomes, including complex regions such as telomeres and centromeres. The Brassica genus is not exempt, and many assemblies based on long reads are now available.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed two genomes ('Z1' and 'Chiifu') using advanced sequencing techniques, revealing significant structural variants caused by large insertions and inversions on specific chromosomes, particularly A05, A06, A09, and A10.
  • * Genome size variations of up to 16% were found across 12 accessions, with 'Z1' exhibiting a higher number of certain repetitive elements compared to 'Chiifu', suggesting that structural differences in genomes can influence phenotypic traits.
View Article and Find Full Text PDF

Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants.

View Article and Find Full Text PDF

Several plastid macromolecular protein complexes are encoded by both nuclear and plastid genes. Therefore, cytonuclear interactions are held in place to prevent genomic conflicts that may lead to incompatibilities. Allopolyploidy resulting from hybridization and genome doubling of two divergent species can disrupt these fine-tuned interactions, as newly formed allopolyploid species confront biparental nuclear chromosomes with a uniparentally inherited plastid genome.

View Article and Find Full Text PDF

Despite the severe impacts of the Deepwater Horizon oil spill, the foundation plant species Spartina alterniflora proved resilient to heavy oiling, providing an opportunity to identify mechanisms of response to the anthropogenic stress of crude oil exposure. We assessed plants from oil-affected and unaffected populations using a custom DNA microarray to identify genomewide transcription patterns and gene expression networks that respond to crude oil exposure. In addition, we used T-DNA insertion lines of the model grass Brachypodium distachyon to assess the contribution of four novel candidate genes to crude oil response.

View Article and Find Full Text PDF

Parental environments can influence offspring traits. However, the magnitude of the impact of parental environments on offspring molecular phenotypes is poorly understood. Here, we test the direct effects and intergenerational effects of jasmonic acid (JA) treatment, which is involved in herbivory-induced defense signaling, on transcriptomes and metabolomes in apomictic common dandelion (Taraxacum officinale).

View Article and Find Full Text PDF

Plants can show long-term effects of environmental stresses and in some cases a stress "memory" has been reported to persist across generations, potentially mediated by epigenetic mechanisms. However, few documented cases exist of transgenerational effects that persist for multiple generations and it remains unclear if or how epigenetic mechanisms are involved. Here, we show that the composition of small regulatory RNAs in apomictic dandelion lineages reveals a footprint of drought stress and salicylic acid treatment experienced two generations ago.

View Article and Find Full Text PDF
Article Synopsis
  • Transposable elements (TEs) are mobile genetic segments that can influence the host genome, particularly in asexual plant species, but their role in plant genome evolution is not well understood.
  • This study focuses on the common dandelion, Taraxacum officinale, comparing five genetic variants to assess how TEs contribute to genetic diversity within this lineage.
  • Key findings reveal a diverse TE population in dandelions, with significant differences between accessions, including higher transcription levels and methylation changes in specific TEs, suggesting ongoing genetic activity and divergence.
View Article and Find Full Text PDF

In this study, we report the assembly and annotation of five reference transcriptomes for the European hexaploid Spartina species (S. maritima, S. alterniflora and their homoploid hybrids S.

View Article and Find Full Text PDF

Background: Asexual reproduction has the potential to enhance deleterious mutation accumulation and to constrain adaptive evolution. One source of mutations that can be especially relevant in recent asexuals is activity of transposable elements (TEs), which may have experienced selection for high transposition rates in sexual ancestor populations. Predictions of genomic divergence under asexual reproduction therefore likely include a large contribution of transposable elements but limited adaptive divergence.

View Article and Find Full Text PDF

Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads.

View Article and Find Full Text PDF

Background And Aims: To date chloroplast genomes are available only for members of the non-protein amino acid-accumulating clade (NPAAA) Papilionoid lineages in the legume family (i.e. Millettioids, Robinoids and the 'inverted repeat-lacking clade', IRLC).

View Article and Find Full Text PDF