Neurogenic inflammation, an important component of many disease states, is mediated by the release of neuropeptides from sensory nerves. To date, it has been possible to inhibit neurogenic inflammation using neuropeptide receptor blockers or by prevention of neuropeptide release. In the current edition of the British Journal of Pharmacology, Cattaruzza and co-workers discuss a novel way of blocking the action of neuropeptides.
View Article and Find Full Text PDFInflammatory diseases associated with pain are often difficult to treat in the clinic due to insufficient understanding of the nociceptive pathways involved. Recently, there has been considerable interest in the role of reactive oxygen species (ROS) in inflammatory disease, but little is known of the role of hydrogen peroxide (H(2)O(2)) in hyperalgesia. In the present study, intraplantar injection of H(2)O(2)-induced a significant dose- and time-dependent mechanical and thermal hyperalgesia in the mouse hind paw, with increased c-fos activity observed in the dorsal horn of the spinal cord.
View Article and Find Full Text PDFCapsaicin is the pungent component of chilli peppers that concomitantly activates and desensitizes C-fibre and Adelta sensory nerve fibres. Stimulation causes an acute neurogenic response including vasodilation, plasma extravasation and hypersensitivity. However, in the present study we have shown that capsaicin produces a dose-dependent vasoconstrictor effect in the mouse knee joint via Transient Receptor Potential Vanilloid 1 (TRPV1) receptor activation.
View Article and Find Full Text PDF