Publications by authors named "Julie E Dalziel"

Although effects of stress-induced anxiety on the gastrointestinal tract and enteric nervous system (ENS) are well studied, how ENS dysfunction impacts behaviour is not well understood. We investigated whether ENS modulation alters anxiety-related behaviour in rats. We used loperamide, a potent μ-opioid receptor agonist that does not cross the blood-brain barrier, to manipulate ENS function and assess changes in behaviour, gut and brain gene expression, and microbiota profile.

View Article and Find Full Text PDF

Background: It is well known that opiates slow gastrointestinal (GI) transit, via suppression of enteric cholinergic neurotransmission throughout the GI tract, particularly the large intestine where constipation is commonly induced. It is not clear whether there is uniform suppression of enteric neurotransmission and colonic motility across the full length of the colon. Here, we investigated whether regional changes in colonic motility occur using the peripherally-restricted mu opioid agonist, loperamide to inhibit colonic motor complexes (CMCs) in isolated mouse colon.

View Article and Find Full Text PDF

Brain signalling pathways involved in subclinical anxiety and depressed mood can be modulated via the gut brain axis (GBA), providing the potential for diet and dietary components to affect mood. We investigated behavioural, physiological and gut microbiome responses to the strain HN001 (LactoB HN001™), which has been shown to reduce postpartum anxiety and depression, and a milk fat globule membrane-enriched product, Lipid 70 (Surestart MFGM Lipid 70), which has been implicated in memory in stress-susceptible Wistar Kyoto rats. We examined behaviour in the open field, elevated plus maze and novel object recognition tests in conjunction with the expression of host genes in neuro-signalling pathways, and we also assessed brain lipidomics.

View Article and Find Full Text PDF

Gastrointestinal (GI) motility is largely dependent upon activity within the enteric nervous system (ENS) and is an important part of the digestive process. Dysfunction of the ENS can impair GI motility as is seen in the case of constipation where gut transit time is prolonged. Animal models mimicking symptoms of constipation have been developed by way of pharmacological manipulations.

View Article and Find Full Text PDF

Kokumi tastants are small γ-glutamyl peptides (GGP) that enhance flavour in foods. We sought to generate GGP from the meat crusts of dry-cured lamb, an underutilised protein resource, identify these using mass spectrometry, and validate their functional activity using a kokumi-calcium sensing receptor (CaSR) assay. The water-soluble extract (WSE) of meat crust was hydrolysed by protease A (PA) and treated with glutaminase (GA).

View Article and Find Full Text PDF

Sensory nerve endings within the wall of the gastrointestinal (GI) tract may respond to bacterial signalling, providing the basis for key biological processes that underlie intestinal motility and microbial homeostasis. Enteric neurons and smooth muscle cells are well known to express an array of receptors, including G-protein coupled receptors and ligand-gated ion channels, that can sense chemical ligands and other bacterially-derived substances. These include short chain fatty acids, secondary bile acids and lipopolysaccharide.

View Article and Find Full Text PDF

Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds.

View Article and Find Full Text PDF

Goat and cow milk share similar protein and lipid content, yet goat milk forms softer curds during stomach digestion. This has been assumed to hasten gastric emptying (GE) on consumption of goat milk compared with cow milk, although there is no direct evidence for this. We hypothesised that goat milk would increase GE and gastrointestinal transit compared with cow milk and alter short-chain fatty acid (SCFA) profiles.

View Article and Find Full Text PDF

There is emerging evidence that an unhealthy dietary pattern may increase the risk of developing depression or anxiety, whereas a healthy dietary pattern may decrease it. This nascent research suggests that dietary interventions could help prevent, or be an alternative or adjunct therapy for, depression and anxiety. The relation, however, is complex, affected by many confounding variables, and is also likely to be bidirectional, with dietary choices being affected by stress and depression.

View Article and Find Full Text PDF

Fermentation of milk is commonly used throughout the world to produce a variety of foods with different health benefits. We hypothesised that due to differences in physicochemical properties and protein sequences among milk from different species and their fermented yogurt samples, their protein digestion and resulting peptide profiles would differ. Cow, goat and sheep milk and yogurt were compared at designated timepoints throughout in vitro gastric and intestinal digestion for differences in peptide profiles and peptide bioactivities.

View Article and Find Full Text PDF

Colostrum plays an important role in initiating the development of the intestinal barrier in newborn mammals. Given its bioactivity, there is much interest in the potential use of bovine colostrum to improve human gastrointestinal health throughout the life span. There is evidence that bovine colostrum is effective at improving small intestinal barrier integrity and some indication that it may alter colonic motility.

View Article and Find Full Text PDF

Stress negatively impacts gut and brain health. Individual differences in response to stress have been linked to genetic and environmental factors and more recently, a role for the gut microbiota in the regulation of stress-related changes has been demonstrated. However, the mechanisms by which these factors influence each other are poorly understood, and there are currently no established robust biomarkers of stress susceptibility.

View Article and Find Full Text PDF

ABC toxins are pore-forming virulence factors produced by pathogenic bacteria. YenTcA is the pore-forming and membrane binding A subunit of the ABC toxin YenTc, produced by the insect pathogen Yersinia entomophaga. Here we present cryo-EM structures of YenTcA, purified from the native source.

View Article and Find Full Text PDF

A variety of fermented foods have been linked to improved human health, but their impacts on the gut microbiome have not been well characterized. Dairy products are one of the most popular fermented foods and are commonly consumed worldwide. One area we currently lack data on is how the process of fermentation changes the gut microbiota upon digestion.

View Article and Find Full Text PDF

Little is known about how milk proteins affect gastrointestinal (GI) transit, particularly for the elderly, in whom digestion has been observed to be slowed. We tested the hypothesis that GI transit is faster for whey than for casein and that this effect is accentuated with hydrolysates, similar to soy. Adult male rats (18 months old) were fed native whey or casein, hydrolyzed whey (WPH) or casein (CPH), hydrolyzed blend (HB; 60% whey:40% casein), or hydrolyzed soy for 14 days then treated with loperamide, prucalopride, or vehicle-control for 7 days.

View Article and Find Full Text PDF

Attention is increasingly being focussed on probiotics as potential agents to restore or improve gastrointestinal (GI) transit. Determining mechanism of action would support robust health claims. The probiotic bacterium HN019 reduces transit time, but its mechanisms of action and effects on motility patterns are poorly understood.

View Article and Find Full Text PDF

Whey protein concentrate (WPC) and hydrolysate (WPH) are protein ingredients used in sports, medical and pediatric formulations. Concentration and hydrolysis methods vary for whey sourced from cheese and casein co-products. The purpose of this research was to investigate the influence of whey processing methods on in vitro gastrointestinal (GI) health indicators for colonic motility, epithelial barrier integrity and immune modulation.

View Article and Find Full Text PDF

Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels play prominent roles in shaping muscle and neuronal excitability. In the cardiovascular system, BK channels promote vascular relaxation and protect against ischemic injury. Recently, inhibition of BK channels has been shown to lower heart rate in intact rodents and isolated hearts, suggesting a novel role in heart function.

View Article and Find Full Text PDF

The aim of this study was to compare the mode of action of the commonly used BK inhibitor paxilline with that of the more recently discovered lolitrem B. Similarities and differences in characteristics of inhibition between the two compounds were investigated. We have previously shown that lolitrem B does not affect the BK channel G-V, in contrast to the rightward shift produced by paxilline.

View Article and Find Full Text PDF

The heart generates and propagates action potentials through synchronized activation of ion channels allowing inward Na(+) and Ca(2+) and outward K(+) currents. There are a number of K(+) channel types expressed in the heart that play key roles in regulating the cardiac cycle. Large conductance calcium-activated potassium (BK) ion channels are not thought to be directly involved in heart function.

View Article and Find Full Text PDF

Lolitrem B is an indole-diterpenoid neurotoxin which is the main causative agent of ryegrass staggers, an animal disease associated with tremors and incoordination. It is also a potent inhibitor of large conductance calcium-activated potassium (BK) channel activity (IC(50)=4 nM). Furthermore, we have recently shown that the motor function deficits induced by lolitrem B are specifically mediated by BK channels, making the toxin a valuable tool for investigating the molecular function and physiological roles of these channels.

View Article and Find Full Text PDF

"Ryegrass staggers" is a neurological condition of unknown mechanism that impairs motor function in livestock. It is caused by infection of perennial ryegrass pastures by an endophytic fungus that produces neurotoxins, predominantly the indole-diterpenoid compound lolitrem B. Animals grazing on such pastures develop uncontrollable tremors and become uncoordinated in their movement.

View Article and Find Full Text PDF

This report describes a procedure for purification of large conductance calcium-activated potassium (BK, maxi-K) channels using immobilised metal affinity chromatography (IMAC) under non-denaturing conditions. An amino-terminal histidine fusion tag was added to hSlo, the human BK channel, and expressed in Sf9 insect cells. Following IMAC purification and production of proteoliposomes, protein function was assessed electrophysiologically in planar bilayer lipid membranes.

View Article and Find Full Text PDF

Human voltage-gated sodium ion channels are major sites of action for drugs and toxins that modulate cellular excitability, and are therefore key molecular targets for ion channel research, high throughput screening for new drugs, and toxin detection. Protein suitable for these applications must be produced in a functionally active form. We report the successful use of ion metal affinity chromatography (IMAC) to purify C-terminal polyhistidine tagged human skeletal muscle voltage-gated sodium (hSkM1-HT) channels from Sf9 insect cells; hSkM1 channels were pharmacologically functional when reconstituted into liposomes and incorporated into planar bilayer lipid membranes.

View Article and Find Full Text PDF

The effects of the mycotoxin lolitrem B on the function of hSlo large conductance calcium-activated potassium channels expressed in HEK293 cells have been investigated using inside-out membrane patches. Lolitrem B potently inhibited hSlo potassium currents activated by depolarising voltage pulses in the presence of 10 microM free calcium. At a concentration of 100 nM, lolitrem B rapidly and completely inhibited outward potassium currents.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3a6f4sk7jmne8ht1tqn15s8ild23hp7t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once