Publications by authors named "Julie Ducreux"

Article Synopsis
  • - The study aims to improve the classification and treatment of systemic autoimmune diseases by identifying molecular clusters, moving beyond traditional clinical diagnosis methods.
  • - Researchers analyzed blood samples from 955 patients and 267 healthy controls, discovering four distinct clusters: three linked to inflammatory responses and one related to low disease activity associated with healthy controls.
  • - The findings suggest that these molecular clusters are stable over time and can aid in understanding disease mechanisms and improving treatment strategies, potentially changing how systemic autoimmune diseases are approached in clinical settings.
View Article and Find Full Text PDF

Objectives: TLR3 mediates skin solar injury by binding nuclear material released from apoptotic keratinocytes, resulting in the production of pro-inflammatory cytokines. Because the TLR3 gene is located in 4q35, a known systemic lupus erythematosus (SLE) susceptibility locus, we wondered whether TLR3 single nucleotide polymorphisms (SNPs) were associated with inflammatory mechanisms relevant to the development of SLE, and disease susceptibility.

Methods: Functional assays were carried out in TLR3-transfected HEK293 cells and in monocyte-derived dendritic cells (moDCs).

View Article and Find Full Text PDF

Objective: Type I IFNs play a well-known role in the pathogenesis of SLE, through activation of CD4 T and antigen-presenting cells. Here, we investigated the effects of IFN alpha (IFNα) on SLE B cell activation and differentiation.

Methods: Peripheral blood mononuclear cells (PBMCs) and purified total or naïve B cells were obtained from healthy controls and SLE patients.

View Article and Find Full Text PDF

Objective: Ubiquitination of proteins leads to their degradation by the proteasome, and is regulated by ubiquitin ligases and substrate-specific ubiquitin-specific peptidases (USPs). The ubiquitination process also plays important roles in the regulation of cell metabolism and cell cycle. Here, we found that the expression of several USPs is increased in SSc tenosynovial and skin biopsies, and we demonstrated that USP inhibition decreases TGF-β signalling in primary fibroblast cell lines.

View Article and Find Full Text PDF

The innovative medicine initiative project called PRECISESADS will study 2.500 individuals affected by systemic autoimmune diseases (SADs) and controls. Among extensive OMICS approaches, multi-parameter flow cytometry analyses will be performed in eleven different centers.

View Article and Find Full Text PDF

Objective: IFN α Kinoid (IFN-K) is a therapeutic vaccine composed of IFNα2b coupled to a carrier protein. In a phase I/II placebo-controlled trial, we observed that IFN-K significantly decreases the IFN gene signature in whole blood RNA samples from SLE patients. Here, we analysed extended follow-up data from IFN-K-treated patients, in order to evaluate persistence of neutralizing anti-IFNα Abs antibodies (Abs), and gene expression profiling.

View Article and Find Full Text PDF

Background: IL6-related T cell activation and TNFα-dependent cell proliferation are major targets of therapy in the RA synovium. We investigated whether expression of these pathways in RA synovial biopsies is associated with disease activity and response to therapy.

Method: Correlation and gene set enrichment studies were performed using gene expression profiles from RA synovial biopsies.

View Article and Find Full Text PDF

Objectives: Early diagnosis of rheumatoid arthritis (RA) is an unmet medical need in the field of rheumatology. Previously, we performed high-density transcriptomic studies on synovial biopsies from patients with arthritis, and found that synovial gene expression profiles were significantly different according to the underlying disorder. Here, we wanted to further explore the consistency of the gene expression signals in synovial biopsies of patients with arthritis, using low-density platforms.

View Article and Find Full Text PDF

Objective: To investigate the global molecular effects of tocilizumab (TCZ) in comparison with methotrexate (MTX) treatment in synovial biopsy tissue obtained from patients with previously untreated rheumatoid arthritis (RA) before therapy (T0) and 12 weeks after the initiation of therapy (T12), and to compare the results with previous gene expression data obtained in synovial biopsy tissue from adalimumab (ADA)- and rituximab (RTX)-treated patients with RA.

Methods: Paired synovial biopsy samples were obtained at T0 and T12 from the affected knee of TCZ-treated RA patients and MTX-treated RA patients. Gene expression studies were performed using GeneChip Human Genome U133 Plus 2.

View Article and Find Full Text PDF

SLE is an autoimmune condition characterized by loss of tolerance to chromatin constituents and the production of ANAs. The majority of SLE patients display spontaneous expression of type I IFN-induced genes in circulating mononuclear cells and peripheral tissues, and type I IFNs play a role in the pathogenesis of the disease via the sustained activation of autoreactive T and B cells necessary for the production of pathogenic autoantibodies. Several IFN-blocking strategies are currently being evaluated in clinical trials: monoclonal antibodies directed against IFN-α and type I IFN-α receptor (IFNAR), as well as active immunization against IFN-α.

View Article and Find Full Text PDF

Sialoadhesin (Sn) is a macrophage-restricted receptor that was first characterised on mouse resident bone marrow macrophages as a receptor that mediates the binding, without ingestion, of sheep erythrocytes. Sn is highly conserved in mammals but its expression on tissue macrophages is heterogeneous. In the mouse, high levels of erythrocytes binding are shown on macrophages from lymphoid tissues but a low erythrocytes binding activity is detectable on macrophages isolated from the broncho-alveolar space.

View Article and Find Full Text PDF

Poly(ethylene glycol) (PEG) 5 kDa and 20 kDa have been previously conjugated to two anti-sialoadhesin (Sn) monoclonal antibodies (mAbs), SER-4 and 3D6, and shown to dramatically increase their inhibitory potency in solid-phase red blood cell binding assays. In the present study, we evaluated the effect of anti-Sn SER-4 and 3D6 mAbs PEGylation on their inhibition of cell adhesion in mouse peritoneal macrophages. We also examined whether Sn-mediated PEGylation could affect plasma membrane functions of macrophages as to prevent accessibility, binding, and endocytosis of macromolecules and particles.

View Article and Find Full Text PDF

PEGylation of antibodies is known to increase their half-life in systemic circulation, but nothing is known regarding whether PEGylation can improve the inhibitory potency of antibodies against target receptors. In this paper, we have examined this question using antibodies directed to Sialoadhesin (Sn), a macrophage-restricted adhesion molecule that mediates sialic acid dependent binding to different cells. Anti-Sn monoclonal antibodies (mAbs), SER-4 and 3D6, were conjugated to PEG 5 kDa or and PEG 20 kDa, resulting in the incorporation of up to 3 molecules of PEG per mAb molecule.

View Article and Find Full Text PDF