Publications by authors named "Julie Chouinard"

The concentrations of extracellular and intracellular signaling molecules, such as dopamine and cAMP, change over both fast and slow timescales and impact downstream pathways in a cell-type specific manner. Fluorescence sensors currently used to monitor such signals are typically optimized to detect fast, relative changes in concentration of the target molecule. They are less well suited to detect slowly-changing signals and rarely provide absolute measurements of either fast and slow signaling components.

View Article and Find Full Text PDF

Hydrogen selenide (HSe) is a central metabolite in the biological processing of selenium for incorporation into selenoproteins, which play crucial antioxidant roles in biological systems. Despite being integral to proper physiological function, this reactive selenium species (RSeS) has received limited attention. We recently reported an early example of a HSe donor (TDN1042) that exhibited slow, sustained release through hydrolysis.

View Article and Find Full Text PDF

Retinal implant devices are becoming an increasingly realizable way to improve the vision of patients blinded by photoreceptor degeneration. As an electrode material that can improve restored visual acuity, carbon nanotubes (CNTs) excel due to their nanoscale topography, flexibility, surface chemistry, and double-layer capacitance. If vertically aligned carbon nanotubes (VACNTs) are biocompatible with retinal neurons and mechanically robust, they can further improve visual acuity-most notably in subretinal implants-because they can be patterned into high-aspect-ratio, micrometer-size electrodes.

View Article and Find Full Text PDF

Recent developments in genetic engineering have established murine models that permit the selective control of cholinergic neurons via optical stimulation. Despite copious benefits granted by these experimental advances, the sensory physiognomy of these organisms has remained poorly understood. Therefore, the present study evaluates sensory and neuronal response properties of animal models developed for the study of optically induced acetylcholine release regulation.

View Article and Find Full Text PDF

Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of β-cells. Pancreatic β-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential; understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature β-cells with distinct molecular, physiological and ultrastructural features.

View Article and Find Full Text PDF

Emerging insulin resistance is normally compensated by increased insulin production of pancreatic β-cells, thereby maintaining normoglycemia. However, it is unclear whether this is achieved by adaptation of β-cell function, mass, or both. Most importantly, it is still unknown which of these adaptive mechanisms fail when type 2 diabetes develops.

View Article and Find Full Text PDF

Cure of type 1 diabetes (T1D) by immune intervention at disease onset depends on the restoration of insulin secretion by endogenous β-cells. However, little is known about the potential of β-cell mass and function to recover after autoimmune attack ablation. Using a longitudinal in vivo imaging approach, we show how functional status and mass of β-cells adapt in response to the onset and remission of T1D.

View Article and Find Full Text PDF

Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices.

View Article and Find Full Text PDF

Background: The non-destructive assessment and characterization of tridimensional (3D) cell and tissue constructs in bioreactors represents a challenge in tissue engineering. Medical imaging modalities, which can provide information on the structure and function of internal organs and tissues in living organisms, have the potential of allowing repetitive monitoring of these 3D cultures in vitro. Positron emission tomography (PET) is the most sensitive non-invasive imaging modality, capable of measuring picomolar amounts of radiolabeled molecules.

View Article and Find Full Text PDF

This study presents the design and validation of a pulsatile flow perfusion bioreactor able to provide a suitable environment for 3D high cell density cultures for tissue engineering applications. Our bioreactor system is mobile, does not require the use of traditional cell culture incubators and is easy to sterilize. It provides real-time monitoring and stable control of pH, dissolved oxygen concentration, temperature, pressure, pulsation frequency, and flow rate.

View Article and Find Full Text PDF

There is increasing evidence suggesting that oxidized low-density lipoproteins (ox-LDL) play a critical role in endothelial injury contributing to the age-related physio-pathological process of atherosclerosis. In this study, the effects of native LDL and ox-LDL on the mechanical properties of living human umbilical vein endothelial cells (HUVEC) were investigated by atomic force microscopy (AFM) force measurements. The contribution of filamentous actin (F-actin) and vimentin on cytoskeletal network organization were also examined by fluorescence microscopy.

View Article and Find Full Text PDF

This short paper reports a simple method to image low density lipoproteins (LDL) using atomic force microscopy (AFM). This instrument allows imaging of biological samples in liquid and presents the advantage of needing no sample preparation such as staining or fixation that may affect their general structure. Dimensions (diameter and height) of individual LDL particles were successfully measured.

View Article and Find Full Text PDF