Enzyme stability can be measured in a number of ways, including melting temperature, activity retention, and size analysis. However, these measurements are often conducted in an idealized storage buffer and not in the relevant enzymatic reaction media. Particularly for reactions that occur in alkaline, volatile, and high ionic strength media, typical analyses using differential scanning calorimetry, light scattering, and sodium dodecyl-sulfate polyacrylamide gel electrophoresis are not satisfactory to track the stability of these enzymes.
View Article and Find Full Text PDFThe bond distance is the simplest and most obvious indicator of the nature of a given chemical bond. However, for rare chemistry, it may happen that it is not yet firmly established. In this communication, we will show that the formally-triple protactinium(V) mono-oxo bond is predicted to be longer than what was previously reported in the solid state and in solution, based on robust quantum mechanical calculations, supported by an extensive methodological study.
View Article and Find Full Text PDFWhile the cellular cytosol and organelles contain attractive targets for disease treatments, it remains a challenge to deliver therapeutic biomacromolecules to these sites. This is due to the selective permeability of the plasma and endosomal membranes, especially for large and hydrophilic therapeutic cargos such as proteins and nucleic acids. In response, many different delivery systems and molecules have been devised to help therapeutics cross these barriers to reach cytosolic targets.
View Article and Find Full Text PDFSelf-assembling protein nanoparticles are beneficial platforms for enhancing the often weak and short-lived immune responses elicited by subunit vaccines. Their benefits include multivalency, similar sizes as pathogens and control of antigen orientation. Previously, the design, preparation, and characterization of self-assembling protein vesicles presenting fluorescent proteins and enzymes on the outer vesicle surface have been reported.
View Article and Find Full Text PDFBacterial adhesion to stainless steel, an alloy commonly used in shared settings, numerous medical devices, and food and beverage sectors, can give rise to serious infections, ultimately leading to morbidity, mortality, and significant healthcare expenses. In this study, Cu-coated nanotextured stainless steel (nSS) fabrication have been demonstrated using electrochemical technique and its potential as an antibiotic-free biocidal surface against Gram-positive and negative bacteria. As nanotexture and Cu combine for dual methods of killing, this material should not contribute to drug-resistant bacteria as antibiotic use does.
View Article and Find Full Text PDFVesicles are self-assembled structures comprised of a membrane-like exterior surrounding a hollow lumen with applications in drug delivery, artificial cells, and micro-bioreactors. Lipid or polymer vesicles are the most common and are made of lipids or polymers, respectively. They are highly useful structures for many applications but it can be challenging to decorate them with proteins or encapsulate proteins in them, owing to the use of organic solvent in their formation and the large size of proteins relative to lipid or polymer molecules.
View Article and Find Full Text PDFis the causative pathogen of scrub typhus, an acute febrile disease prevalent in the Asia-Pacific region that is spread to people through chigger bites. Despite the emerging threat, there is no currently available vaccine against . Here, we developed dual-antigen subunit vaccine nanoparticles using recombinant 47 kD and 56 kD proteins, which are immunogenic outer membrane antigens of The biocompatible protein vaccine nanoparticles were formed via desolvation of r56 or r47E antigens with acetone, coating with an additional layer of the 56 kD protein, and stabilization with reducible homobifunctional DTSSP and heterobifunctional SDAD crosslinkers.
View Article and Find Full Text PDFThere remains a need for the development of a universal influenza vaccine, as current seasonal influenza vaccines exhibit limited protection against mismatched, mutated, or pandemic influenza viruses. A desirable approach to developing an effective universal influenza vaccine is the incorporation of highly conserved antigens in a multivalent scaffold that enhances their immunogenicity. Here, we develop a broadly cross-reactive influenza vaccine by functionalizing self-assembled protein nanocages (SAPNs) with multiple copies of the hemagglutinin stalk on the outer surface and matrix protein 2 ectodomain on the inner surface.
View Article and Find Full Text PDFThe development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles.
View Article and Find Full Text PDFProtein vesicles made from bioactive proteins have potential value in drug delivery, biocatalysis, and as artificial cells. As the proteins are produced recombinantly, the ability to precisely tune the protein sequence provides control not possible with polymeric vesicles. The tunability and biocompatibility motivated this work to develop protein vesicles using rationally designed protein building blocks to investigate how protein sequence influences vesicle self-assembly and properties.
View Article and Find Full Text PDFThe epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1-M2e or NA2-M2e fusion proteins as the coating antigens by SDAD hetero-bifunctional crosslinking is exploited.
View Article and Find Full Text PDFACS Biomater Sci Eng
March 2023
Subunit vaccines offer numerous attractive features, including good safety profiles and well-defined components with highly characterized properties because they do not contain whole pathogens. However, vaccine platforms based on one or few selected antigens are often poorly immunogenic. Several advances have been made in improving the effectiveness of subunit vaccines, including nanoparticle formulation and/or co-administration with adjuvants.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Protein nanoparticles have been demonstrated as effective carriers for protein antigens and therapeutics due to properties endowed by their protein composition. They exhibit high protein to carrier yields, biocompatibility, and heterogeneous surface properties. While protein nanoparticles have been delivered via multiple routes, including intranasal, their interactions with mucosal barriers have not been well studied or modified.
View Article and Find Full Text PDFBiomacromolecules
September 2022
Nanosheets are two-dimensional materials, less than 100 nm thick, that can be used for separations, biosensing, and biocatalysis. Nanosheets can be made from inorganic and organic materials such as graphene, polymers, and proteins. Here, we report the self-assembly of nanosheets under aqueous conditions from functional proteins.
View Article and Find Full Text PDFThe Pourbaix diagram of an element displays its stable chemical forms with respect to the redox potential and pH of the solution, whose knowledge is fundamental for understanding and anticipating the chemistry of the element in a specified solution. Unlike most halogens, the Pourbaix diagram in the aqueous phase for astatine (At, = 85) is still under construction. In particular, the predominant domains of two astatine species assumed to exist under alkaline conditions, At and AtO(OH), need to be refined.
View Article and Find Full Text PDFProtein biomaterials offer several advantages over those made from other components because their amino acid sequence can be precisely controlled with genetic engineering to produce a diverse set of material building blocks. In this work, three different elastin-like polypeptide (ELP) sequences were designed to synthesize pH-responsive protein vesicles. ELPs undergo a thermally induced hydrophobic transition that enables self-assembly of different kinds of protein biomaterials.
View Article and Find Full Text PDFSelf-assembling proteins are valuable building blocks for constructing drug nanocarriers due to their self-assembly behavior, monodispersity, biocompatibility, and biodegradability. Genetic and chemical modifications allow for modular design of protein nanocarriers with effective drug encapsulation, targetability, stimuli responsiveness, and in vivo half-life. Protein nanocarriers have been developed to deliver various therapeutic molecules including small molecules, proteins, and nucleic acids with proven in vitro and in vivo efficacy.
View Article and Find Full Text PDFEnzyme immobilization is an essential technology for commercializing biocatalysis. It imparts stability, recoverability, and other valuable features that improve the effectiveness of biocatalysts. While many avenues to join an enzyme to solid phases exist, protein-mediated immobilization is rapidly developing and has many advantages.
View Article and Find Full Text PDFIn recent years, protein engineering efforts have yielded a diverse set of binding proteins that hold promise for various therapeutic applications. Despite this, their inability to reach intracellular targets limits their applications to cell surface or soluble targets. To address this challenge, we previously reported a protein carrier that binds antibodies and delivers them to therapeutic targets inside cancer cells.
View Article and Find Full Text PDFAdv Healthc Mater
August 2021
Understanding the phenomena that govern complex interfacial and directed assemblies is essential for both control and scale-up of particle syntheses. The present work describes an effort to understand, control, and tune the formation of protein-inorganic calcium-phosphate supraparticles that are produced at an oscillating air-water interface created by end-over-end rotation of the synthesis solution. Supraparticles were synthesized under an array of different conditions that varied reagent concentration, the presence of additives, tube size, and rotational speed.
View Article and Find Full Text PDFRecombinant protein- and peptide-based vaccines can deliver large amounts of specific antigens for tailored immune responses. One class of these are protein and peptide nanoclusters (PNCs), which are made entirely from the crosslinked antigen. PNCs leverage the inherent immunogenicity of nanoparticulate antigens while minimizing the use of excipients normally used to create them.
View Article and Find Full Text PDFIntracellular antibody delivery into live cells has significant implications for research and therapeutic applications. However, many delivery systems lack potency due to low uptake and/or endosomal entrapment and understanding of intracellular delivery processes is lacking. Herein, we studied the cellular uptake, intracellular trafficking and targeting of antibodies using our previously developed Hex antibody nanocarrier.
View Article and Find Full Text PDF