Hepatocyte transplantation has become an alternative to orthotopic liver transplantation for the treatment of liver metabolic diseases. However, there is an increasing lack of donor organs and isolated mature hepatocytes are difficult to manipulate and cannot be expanded in vitro. It is therefore necessary to find alternative sources of hepatocytes, and different approaches to evaluate the therapeutic potential of stem cells of different origins are being developed.
View Article and Find Full Text PDFUnlabelled: The success of hepatocyte transplantation has been limited by the low efficiency of transplanted cell integration into liver parenchyma. Human fetal hepatic progenitor cells (hepatoblasts) engraft more effectively than adult hepatocytes in mouse livers. However, the signals required for their integration are not yet fully understood.
View Article and Find Full Text PDFBackground: Hepatocyte transplantation could be an alternative to whole liver transplantation for the treatment of metabolic liver diseases. However, the results of clinical investigations suggest that the number of engrafted hepatocytes was insufficient to correct metabolic disorders. This may partly result from a lack of proliferation of transplanted hepatocytes.
View Article and Find Full Text PDFBackground/aims: Lentivirus-mediated ex vivo gene therapy is becoming a promising approach for the treatment of liver metabolic disorders. However, the feasibility of this approach needs to be studied in large animal models. The purpose of this study was to evaluate the efficacy of ex vivo gene transfer into Macaca hepatocytes with two different HIV-1 derived lentiviral vectors.
View Article and Find Full Text PDFTransplantation of genetically modified or unmodified hepatocytes appears to be a less invasive alternative to liver transplantation. However, clinical trials performed for the treatment of metabolic deficiencies resulted in a partial and transitory correction due to an insufficient number of engrafted and functional hepatocytes. In vitro, adult hepatocytes do not proliferate and the lack of organ donors limits their availability.
View Article and Find Full Text PDFTransplantation of hepatocytes is a promising alternative to liver transplantation for the treatment of severe liver diseases. However, this approach is hampered by the shortage of donor organs and intrinsic limitations of adult hepatocytes. To investigate whether most of the hurdles faced with adult hepatocytes could be surmounted by the use of human fetal hepatoblasts, we have developed a method to isolate, transduce, and cryopreserve hepatoblasts from human livers at an early stage of development (11-13 weeks of gestation).
View Article and Find Full Text PDF