Publications by authors named "Julie Biteen"

Bacterial ribonucleoprotein bodies (BR-bodies) are dynamic biomolecular condensates that play a pivotal role in RNA metabolism. We investigated how BR-bodies significantly influence mRNA fate by transitioning between liquid- and solid-like states in response to stress. With a combination of single-molecule and bulk fluorescence microscopy, biochemical assays, and quantitative analyses, we determine that BR-bodies promote efficient mRNA decay in a liquid-like condensate during exponential growth.

View Article and Find Full Text PDF

Plasmonic antennas increase the photon flux in their vicinity, which can lead to plasmon-enhanced fluorescence for molecules near these nanostructures. Here, we combine plasmon-coupled fluorescence and fluorescence-detected circular dichroism to build a specific and sensitive detection strategy for chiral single molecules. Electromagnetic simulations indicate that a two-dimensional gold nanoparticle dimer antenna enhances the electric field and optical chirality of a plane wave in its near field.

View Article and Find Full Text PDF

Unlabelled: Flagella are complex, trans-envelope nanomachines that localize to species- specific cellular addresses. Here we study the localization dynamics of the earliest stage of basal body formation in using a fluorescent fusion to the C-ring protein FliM. We find that basal bodies do not exhibit dynamic subunit exchange and are largely stationary at steady state, consistent with flagellar assembly through the peptidoglycan.

View Article and Find Full Text PDF

Visualizing and measuring molecular-scale interactions in living cells represents a major challenge, but recent advances in single-molecule super-resolution microscopy are bringing us closer to achieving this goal. Single-molecule super-resolution microscopy enables high-resolution and sensitive imaging of the positions and movement of molecules in living cells. HP1 proteins are important regulators of gene expression because they selectively bind and recognize H3K9 methylated (H3K9me) histones to form heterochromatin-associated protein complexes that silence gene expression, but several important mechanistic details of this process remain unexplored.

View Article and Find Full Text PDF

HP1 proteins are essential for establishing and maintaining transcriptionally silent heterochromatin. They dimerize, forming a binding interface to recruit diverse chromatin-associated factors. Although HP1 proteins are known to rapidly evolve, the extent of variation required to achieve functional specialization is unknown.

View Article and Find Full Text PDF

Biomolecular condensates have emerged as major drivers of cellular organization. It remains largely unexplored, however, whether these condensates can impart mechanical function(s) to the cell. The heterochromatin protein HP1α (Swi6 in Schizosaccharomyces pombe) crosslinks histone H3K9 methylated nucleosomes and has been proposed to undergo condensation to drive the liquid-like clustering of heterochromatin domains.

View Article and Find Full Text PDF

High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through in vitro assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins in Escherichia coli as a means to determine the nature of biomolecular condensates in bacteria.

View Article and Find Full Text PDF

Chiral plasmonic surfaces with 3D "forests" from nanohelicoids should provide strong optical rotation due to alignment of helical axis with propagation vector of photons. However, such three-dimensional nanostructures also demand multi-step nanofabrication, which is incompatible with many substrates. Large-scale photonic patterns on polymeric and flexible substrates remain unattainable.

View Article and Find Full Text PDF

The chirality of biomacromolecules is critical for their function, but the optical signal of this chirality is small in the visible range. Plasmonic nanoparticles are antennas that can couple to this chiral signal. Here, we examine the molecular-scale mechanism behind the induced circular dichroism of gold nanorods (AuNRs) in solution with insulin fibrils and the fibril-intercalating dye thioflavin T (ThT) with polarization-resolved single-molecule fluorescence and single-particle photoluminescence (PL) imaging.

View Article and Find Full Text PDF

HP1 proteins are essential for establishing and maintaining transcriptionally silent heterochromatin. They dimerize, forming a binding interface to recruit diverse chromatin-associated factors. HP1 proteins are specialized and rapidly evolve, but the extent of variation required to achieve functional specialization is unknown.

View Article and Find Full Text PDF

Bacterial ribonucleoprotein bodies (BR-bodies) are non-membrane-bound structures that facilitate mRNA decay by concentrating mRNA substrates with RNase E and the associated RNA degradosome machinery. However, the full complement of proteins enriched in BR-bodies has not been defined. Here, we define the protein components of BR-bodies through enrichment of the bodies followed by mass spectrometry-based proteomic analysis.

View Article and Find Full Text PDF

High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins in as a means to determine the nature of biomolecular condensates in bacteria.

View Article and Find Full Text PDF

High-resolution imaging of biomolecular condensates in living cells is essential for correlating their properties to those observed through assays. However, such experiments are limited in bacteria due to resolution limitations. Here we present an experimental framework that probes the formation, reversibility, and dynamics of condensate-forming proteins in as a means to determine the nature of biomolecular condensates in bacteria.

View Article and Find Full Text PDF

Visualizing and measuring molecular-scale interactions in living cells represents a major challenge, but recent advances in microscopy are bringing us closer to achieving this goal. Single-molecule super-resolution microscopy enables high-resolution and sensitive imaging of the positions and movement of molecules in living cells. HP1 proteins are important regulators of gene expression because they selectively bind and recognize H3K9 methylated (H3K9me) histones to form heterochromatin-associated protein complexes that silence gene expression.

View Article and Find Full Text PDF

Bacterial DNA methyltransferases (MTases) function in restriction modification systems, cell cycle control, and the regulation of gene expression. DnmA is a recently described DNA MTase that forms N6-methyladenosine at nonpalindromic 5'-GACGG-3' sites in Bacillus subtilis, yet how DnmA activity is regulated is unknown. To address DnmA regulation, we tested substrate binding and found that DnmA binds poorly to methylated DNA and to an RNA-DNA hybrid with the DNA recognition sequence.

View Article and Find Full Text PDF

Bacteria rely on protein systems for regulation in response to external environmental signals. Single-molecule fluorescence imaging and tracking has elucidated the complex mechanism of these protein systems in a variety of bacteria. We recently investigated , the Gram-negative bacterium responsible for the human cholera disease, and its regulation of the production of toxins and virulence factors through the membrane-localized transcription factors TcpP and ToxR.

View Article and Find Full Text PDF

The gut microbiota comprises hundreds of species with a composition shaped by the available glycans. The well-studied starch utilization system (Sus) is a prototype for glycan uptake in the human gut bacterium Bacteroides thetaiotaomicron (Bt). Each Sus-like system includes outer-membrane proteins, which translocate glycan into the periplasm, and one or more cell-surface glycoside hydrolases, which break down a specific (cognate) polymer substrate.

View Article and Find Full Text PDF

HP1 proteins traverse a complex and crowded chromatin landscape to bind with low affinity but high specificity to histone H3K9 methylation (H3K9me) and form transcriptionally inactive genomic compartments called heterochromatin. Here, we visualize single-molecule dynamics of an HP1 homolog, the fission yeast Swi6, in its native chromatin environment. By tracking single Swi6 molecules, we identify mobility states that map to discrete biochemical intermediates.

View Article and Find Full Text PDF

Complex carbohydrates shape the gut microbiota, and the collective fermentation of resistant starch by gut microbes positively affects human health through enhanced butyrate production. The keystone species () is a specialist in degrading resistant starch; its degradation products are used by other bacteria including (). We analysed the metabolic and spatial relationships between and during potato starch degradation and found that utilizes glucose that is released from upon degradation of resistant potato starch and soluble potato amylopectin.

View Article and Find Full Text PDF

The double membrane architecture of Gram-negative bacteria forms a barrier that is impermeable to most extracellular threats. Bacteriocin proteins evolved to exploit the accessible, surface-exposed proteins embedded in the outer membrane to deliver cytotoxic cargo. Colicin E1 is a bacteriocin produced by, and lethal to, that hijacks the outer membrane proteins (OMPs) TolC and BtuB to enter the cell.

View Article and Find Full Text PDF

Heterochromatin is most often associated with eukaryotic organisms. Yet, bacteria also contain areas with densely protein-occupied chromatin that appear to silence gene expression. One nucleoid-associated silencing factor is the conserved protein Hfq.

View Article and Find Full Text PDF