Publications by authors named "Julie Bentley"

The change in ocular wavefront aberrations with visual angle determines the isoplanatic patch, defined as the largest field of view over which diffraction-limited retinal imaging can be achieved. Here, we study how the isoplanatic patch at the foveal center varies across 32 schematic eyes, each individualized with optical biometry estimates of corneal and crystalline lens surface topography, assuming a homogeneous refractive index for the crystalline lens. The foveal isoplanatic patches were calculated using real ray tracing through 2, 4, 6 and 8 mm pupil diameters for wavelengths of 400-1200 nm, simulating five adaptive optics (AO) strategies.

View Article and Find Full Text PDF

This publisher's note contains a correction to Appl. Opt.62, 3485 (2023)APOPAI0003-693510.

View Article and Find Full Text PDF

Gradient-index Alvarez lenses (GALs), a new, to the best of our knowledge, type of freeform optical component, are surveyed in this work for their unique properties in generating variable optical power. GALs display similar behavior to conventional surface Alvarez lenses (SALs) by means of a freeform refractive index distribution that has only recently been achievable in fabrication. A first-order framework is described for GALs including analytical expressions for their refractive index distribution and power variation.

View Article and Find Full Text PDF

The annular folded lens (AFL) is a design form offering large aperture, high-resolution imaging in a very axially compact package. The folded optic can be made monolithic for easier fabrication and alignment, yet the introduction of refractive surfaces with a dispersive optical material gives way to chromatic aberrations. AFL designs using homogeneous media are generally limited to the monochromatic regime, with polychromatic performance greatly reduced.

View Article and Find Full Text PDF

Freeform optics enable irregular system geometries and high optical performance by leveraging rotational variance. To this point, for both imaging and illumination, freeform optics has largely been synonymous with freeform surfaces. Here a new frontier in freeform optics is surveyed in the form of freeform gradient-index (F-GRIN) media.

View Article and Find Full Text PDF

Conventional optical designs with gradient index (GRIN) use rotationally-invariant GRIN profiles described by polynomials with no orthogonality. These GRIN profiles have limited effectiveness at correcting aberrations from tilted/decentered or freeform systems. In this paper, a three-dimensional orthogonal polynomial basis set (the FGRIN basis) is proposed, which enables the design of GRIN profiles with both rotational and axial variations.

View Article and Find Full Text PDF

A combined 32° full field of view refractive fundus camera and fixation target with a -20 to +10 diopter sphere correction range is described and demonstrated. The optical setup partially corrects the average longitudinal chromatic aberration and spherical aberration of the human eye, while providing a long eye relief to allow integration with reflective adaptive optics ophthalmoscopes, as a viewfinder. The fundus camera operates with 940 nm light, using a maximum 2.

View Article and Find Full Text PDF

Nodal aberration theory is used to calculate the third-order aberrations that result in image blur for an unobscured modified 4f relay (2f1 + 2f2) formed by two tilted spherical mirrors for objects at infinity (infinite conjugate) and near the front focal plane of the first mirror (finite conjugate). The field-averaged wavefront variance containing only non-rotationally symmetric aberration coefficients is then proposed as an optimization metric. Analytical and ray tracing optimization are demonstrated through sample designs.

View Article and Find Full Text PDF

This paper presents the design and evaluation of a reflectance confocal laser endomicroscope using a miniature objective lens within a rigid probe in conjunction with an electrically tunable lens for axial scanning. The miniature lens was characterized alone as well as in the endoscope across a 200 µm axial scan range using the tunable lens. The ability of the confocal endoscope to probe the human oral cavity is demonstrated by imaging of the oral mucosa in vivo.

View Article and Find Full Text PDF

A miniature catadioptric lens for endoscopic imaging based on the principle of wavelength division multiplexing is presented. We demonstrate change of the magnification and the field of view (FOV) of the lens without any mechanical adjustment of the optical elements. The lens provides magnifications of ~-1.

View Article and Find Full Text PDF

We present a miniature endomicroscope that combines large field-of-view (FOV) (1.15 mm) reflectance imaging with high-resolution (~0.5 μm) multiphoton intrinsic fluorescence imaging.

View Article and Find Full Text PDF