Publications by authors named "Julie Auxier"

The cationic, amphiphilic peptide nisin is an effective inhibitor of gram-positive bacteria whose mode of action does not encourage pathogenic resistance, and its proper incorporation into food packaging could enhance food stability, safety, and quality in a number of circumstances. Sufficiently small peptides have been shown to integrate into otherwise nonfouling polyethylene oxide (PEO) brush layers in accordance with their amphiphilicity and ordered structure, including nisin, and we have recently shown that nisin entrapment within a PEO layer does not compromise the nonfouling character of that layer. In this work we test the hypothesis that surface-bound, pendant PEO chains will inhibit displacement of entrapped nisin by competing proteins and, in this way, prolong retention of nisin activity at the interface.

View Article and Find Full Text PDF

A number of sufficiently small peptides have been shown to integrate into polyethylene oxide (PEO) brush layers in accordance with their amphiphilicity and ordered structure. Those results have suggested that responsive drug delivery systems based on peptide-loaded PEO layers can be controlled by modulation of solution conditions and peptide amphiphilicity. However, the presence of entrapped peptide may compromise the protein repulsive character of the PEO layer, and in this way reduce the viability of a medical device coating based on such an approach.

View Article and Find Full Text PDF

The antimicrobial peptide nisin shows potent activity against Gram-positive bacteria including the most prevalent implant-associated pathogens. Its mechanism of action minimizes the opportunity for the rise of resistant bacteria and it does not appear to be toxic to humans, suggesting good potential for its use in antibacterial coatings for selected medical devices. A more quantitative understanding of nisin loading and release from polyethylene oxide (PEO) brush layers will inform new strategies for drug storage and delivery, and in this work optical waveguide lightmode spectroscopy was used to record changes in adsorbed mass during cyclic adsorption-elution experiments with nisin, at uncoated and PEO-coated surfaces.

View Article and Find Full Text PDF

In grating-based x-ray phase sensitive imaging, dark-field contrast refers to the extinction of the interference fringes due to small-angle scattering. For configurations where the sample is placed before the beamsplitter grating, the dark-field contrast has been quantified with theoretical wave propagation models. Yet when the grating is placed before the sample, the dark-field contrast has only been modeled in the geometric optics regime.

View Article and Find Full Text PDF

Normal incidence Talbot-Lau interferometers in x-ray applications have the drawbacks of low fringe visibility with polychromatic sources when the wave propagation distance is increased to achieve higher phase sensitivity, and when fabrication limits the attainable grating density. In contrast, reflective gratings illuminated at grazing angles have dramatically higher effective densities than their physical values. However, new designs are needed for far field interferometers using grazing angle geometry with incoherent light sources.

View Article and Find Full Text PDF

The adsorption and elution of the antimicrobial peptide nisin at silanized silica surfaces coated to present pendant polyethylene oxide chains was detected in situ by zeta potential measurements. Silica microspheres were treated with trichlorovinylsilane to introduce hydrophobic vinyl groups, followed by self assembly of the polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock surfactant Pluronic F108, or an F108 derivative with nitrilotriacetic acid end groups. Triblock-coated microspheres were gamma-irradiated to covalently stabilize the PPO-surface association.

View Article and Find Full Text PDF