Integrated virus genomes (prophages) are commonly found in sequenced bacterial genomes but have rarely been described in detail for rhizobial genomes. STM 6018 is a rhizobial strain that was isolated in 2006 from a root nodule of a host in French Guiana, South America. Here we describe features of the genome of STM 6018, focusing on the characterization of two different types of prophages that have been identified in its genome.
View Article and Find Full Text PDFPseudomonas syringae MUP17 was isolated from Western Australian frost-damaged barley. The MUP17 complete genome contained a 5,850,185-bp single circular chromosome with a GC content of 59.12%.
View Article and Find Full Text PDFThe genome of Pseudomonas syringae MUP32, which was isolated from frost-damaged pea in New South Wales, Australia, is tripartite and contains a circular chromosome (6,032,644 bp) and two plasmids (61,675 and 54,993 bp). IMG/M genome annotation identified 5,370 protein-coding genes, one of which encoded an ice-nucleation protein with 19 repetitive PF00818 domains.
View Article and Find Full Text PDFPseudomonas syringae MUP20 was isolated from Western Australian frost-damaged wheat. The MUP20 complete genome contained a 6,045,198-bp single circular chromosome with a GC content of 59.03%.
View Article and Find Full Text PDFAlthough forms highly effective symbioses with the comparatively acid-sensitive genus , its introduction into acid soils appears to have selected for symbiotic interactions with acid-tolerant strains. has the unusual ability of being able to nodulate and fix nitrogen, albeit sub-optimally, not only with but also with the promiscuous host . Here we describe the genome of OR191 and genomic features important for the symbiotic interaction with both of these hosts.
View Article and Find Full Text PDFBackground: Cupriavidus strain STM 6070 was isolated from nickel-rich soil collected near Koniambo massif, New Caledonia, using the invasive legume trap host Mimosa pudica. STM 6070 is a heavy metal-tolerant strain that is highly effective at fixing nitrogen with M. pudica.
View Article and Find Full Text PDFHerein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains.
View Article and Find Full Text PDFThe genus Methylobacterium, when first proposed by Patt et al. in 1976, was a monospecific genus created to accommodate a single pink pigmented facultatively methylotrophic bacterium. The genus now has over 50 validly published species, however, the percentage 16S rRNA sequence divergence within Methylobacterium questions whether or not they can still be accommodated within one genus.
View Article and Find Full Text PDF10.1601/nm.1335 Mlalz-1 (INSDC = ATZD00000000) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing nodule of (L.
View Article and Find Full Text PDFUSDA 76 (INSCD = ARAG00000000), the type strain for , is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of (L. Merr) grown in the USA. Because of its significance as a microsymbiont of this economically important legume, USDA 76 was selected as part of the DOE Joint Genome Institute 2010 sequencing project.
View Article and Find Full Text PDFSTM6155 (INSCD = ATYY01000000) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as an effective nitrogen fixing microsymbiont of the legume L.. STM6155 was isolated in 2009 from a nodule of the trap host grown in nickel-rich soil collected near Mont Dore, New Caledonia.
View Article and Find Full Text PDFThe papilionoid legume tribe Brongniartieae comprises a collection of 15 genera with disparate morphologies that were previously positioned in at least four remotely related tribes. The Brongniartieae displays a wide geographical disjunction between Australia and the New World and previous phylogenetic studies had provided conflicting results about the relationships between the American and Australian genera. We carry out phylogenetic analyses of (1) a plastid matK dataset extensively sampled across legumes to solve the enigmatic relationship of the Cuban-endemic monospecific genus Behaimia; and (2) multilocus datasets with focus on all genera ever referred to Brongniartieae.
View Article and Find Full Text PDFMost Ensifer strains are comparatively acid sensitive, compromising their persistence in low pH soils. In the acid-tolerant strain Ensifer medicae WSM419, the acid-activated expression of lpiA is essential for enhancing survival in lethal acidic conditions. Here we characterise a multi-step phosphorelay signal transduction pathway consisting of TcsA, TcrA, FsrR, RpoN and its cognate enhancer-binding protein EbpA, which is required for the induction of lpiA and the downstream acvB gene.
View Article and Find Full Text PDFEnsifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume P. cineraria (L.
View Article and Find Full Text PDFEnsifer medicae WSM244 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago species. WSM244 was isolated in 1979 from a nodule recovered from the roots of the annual Medicago polymorpha L. growing in alkaline soil (pH 8.
View Article and Find Full Text PDFRoot nodule bacteria (RNB) or "rhizobia" are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogenetic distribution patterns and sequence signatures based on known precepts of symbiotic- and host-microbe interactions.
View Article and Find Full Text PDFSeven strains, ICMP 19430T, ICMP 19429, ICMP 19431, WSM4637, WSM4638, WSM4639 and WSM4640, were isolated from nitrogen-fixing nodules on roots of the invasive South African legume Dipogon lignosus (subfamily Papilionoideae, tribe Phaseoleae) in New Zealand and Western Australia, and their taxonomic positions were investigated by using a polyphasic approach. All seven strains grew at 10-37 °C (optimum, 25-30 °C), at pH 4.0-9.
View Article and Find Full Text PDFEnsifer meliloti 4H41 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of common bean (Phaseolus vulgaris). Strain 4H41 was isolated in 2002 from root nodules of P. vulgaris grown in South Tunisia from the oasis of Rjim-Maatoug.
View Article and Find Full Text PDFAccurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures.
View Article and Find Full Text PDFRoot nodule bacteria are free-living soil bacteria, belonging to diverse genera within the Alphaproteobacteria and Betaproteobacteria, that have the capacity to form nitrogen-fixing symbioses with legumes. The symbiosis is specific and is governed by signaling molecules produced from both host and bacteria. Sequencing of several model RNB genomes has provided valuable insights into the genetic basis of symbiosis.
View Article and Find Full Text PDFMicrovirga lotononidis is a recently described species of root-nodule bacteria that is an effective nitrogen- (N2) fixing microsymbiont of the symbiotically specific African legume Listia angolensis (Welw. ex Bak.) B.
View Article and Find Full Text PDFRoot-nodule bacteria were isolated from Inga laurina (Sw.) Willd. growing in the Cerrado Amazon region, State of Roraima, Brazil.
View Article and Find Full Text PDF