Publications by authors named "Julie A Z Zedler"

Extracellular proteins play a significant role in shaping microbial communities which, in turn, can impact ecosystem function, human health, and biotechnological processes. Yet, for many ubiquitous microbes, there is limited knowledge regarding the identity and function of secreted proteins. Here, we introduce EXCRETE (enhanced exoproteome characterization by mass spectrometry), a workflow that enables comprehensive description of microbial exoproteomes from minimal starting material.

View Article and Find Full Text PDF

Cyanobacteria offer great potential as alternative biotechnological hosts due to their photoautotrophic capacities. However, in comparison to established heterotrophic hosts, several key aspects, such as product titers, are still lagging behind. Nanobiotechnology is an emerging field with great potential to improve existing hosts, but so far, it has barely been explored in microbial photosynthetic systems.

View Article and Find Full Text PDF

Progestogens and androgens have been found in many plants, but little is known about their biosynthesis and the evolution of steroidogenesis in these organisms. Here, we show that the occurrence and biosynthesis of progestogens and androgens are conserved across the viridiplantae lineage. An UHPLC-ESI-MS/MS method allowed high-throughput analysis of the occurrence and chemical conversion of progestogens and androgens in 41 species across the green plant lineage.

View Article and Find Full Text PDF

Cyanobacteria are photosynthetic prokaryotes of high ecological and biotechnological relevance that have been cultivated in laboratories around the world for more than 70 years. Prolonged laboratory culturing has led to multiple microevolutionary events and the appearance of a large number of 'domesticated' substrains among model cyanobacteria. Despite its widespread occurrence, strain domestication is still largely ignored.

View Article and Find Full Text PDF

In recent years, a plethora of new synthetic biology tools for use in cyanobacteria have been published; however, their reported characterizations often cannot be reproduced, greatly limiting the comparability of results and hindering their applicability. In this interlaboratory study, the reproducibility of a standard microbiological experiment for the cyanobacterial model organism sp. PCC 6803 was assessed.

View Article and Find Full Text PDF

Cyanobacteria are fast-growing, genetically accessible, photoautotrophs. Therefore, they have attracted interest as sustainable production platforms. However, the lack of techniques to systematically optimize cultivation parameters in a high-throughput manner is holding back progress towards industrialization.

View Article and Find Full Text PDF

Cyanobacteria, ubiquitous oxygenic photosynthetic bacteria, interact with the environment and their surrounding microbiome through the secretion of a variety of small molecules and proteins. The release of these compounds is mediated by sophisticated multiprotein complexes, also known as secretion systems. Genomic analyses indicate that protein and metabolite secretion systems are widely found in cyanobacteria; however, little is known regarding their function, regulation, and secreted effectors.

View Article and Find Full Text PDF

Cyanobacteria are ubiquitous oxygenic photosynthetic bacteria with a versatile metabolism that is highly dependent on effective protein targeting. Protein sorting in diderm bacteria is not trivial and, in cyanobacteria, even less so due to the presence of a complex membrane system: the outer membrane, the plasma membrane and the thylakoid membrane. In cyanobacteria, protein import into the thylakoids is essential for photosynthesis, export to the periplasm fulfills a multifunctional role in maintaining cell homeostasis, and secretion mediates motility, DNA uptake and environmental interactions.

View Article and Find Full Text PDF

Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • RNA interference (RNAi) utilizes double-stranded RNA to target and inhibit key viral genes in shrimp, providing a method to combat viral infections.
  • This study engineered the microalga Chlamydomonas reinhardtii to express dsRNA targeting a shrimp virus, enabling the alga to serve as a sustainable feed supplement for shrimp.
  • Results showed that shrimp fed with dsRNA-expressing algae had a significantly higher survival rate after viral infection, indicating the potential of this approach for improving shrimp aquaculture.
View Article and Find Full Text PDF

In recent years, efforts to exploit sunlight, a free and abundant energy source, have sped up dramatically. Oxygenic photosynthetic organisms, such as higher plants, algae, and cyanobacteria, can convert solar energy into chemical energy very efficiently using water as an electron donor. By providing organic building blocks for life in this way, photosynthesis is undoubtedly one of the most important processes on Earth.

View Article and Find Full Text PDF

Dietary supplements and functional foods are becoming increasingly popular complements to regular diets. A recurring ingredient is the essential cofactor vitamin B (B). Microalgae are making their way into the dietary supplement and functional food market but do not produce B, and their B content is very variable.

View Article and Find Full Text PDF

Microalgae have emerged as potentially powerful platforms for the production of recombinant proteins and high-value products. Chlamydomonas reinhardtii is a potentially important host species due to the range of genetic tools that have been developed for this unicellular green alga. Transformation of the chloroplast genome offers important advantages over nuclear transformation, and a wide range of recombinant proteins have now been expressed in the chloroplasts of C.

View Article and Find Full Text PDF

Microalgae are a diverse group of single-cell photosynthetic organisms that include cyanobacteria and a wide range of eukaryotic algae. A number of microalgae contain high-value compounds such as oils, colorants, and polysaccharides, which are used by the food additive, oil, and cosmetic industries, among others. They offer the potential for rapid growth under photoautotrophic conditions, and they can grow in a wide range of habitats.

View Article and Find Full Text PDF

Cyanobacteria exhibit a complex form of membrane differentiation that sets them apart from most bacteria. Many processes take place in the plasma membrane, but photosynthetic light capture, electron transport and ATP synthesis take place in an abundant internal thylakoid membrane. This review considers how this system of subcellular compartmentalisation is maintained, and how proteins are directed towards the various subcompartments--specifically the plasma membrane, periplasm, thylakoid membrane and thylakoid lumen.

View Article and Find Full Text PDF

The unicellular green alga Chlamydomonas reinhardtii has potential as a cell factory for the production of recombinant proteins and other compounds, but mainstream adoption has been hindered by a scarcity of genetic tools and a need to identify products that can be generated in a cost-effective manner. A promising strategy is to use algal chloroplasts as a site for synthesis of high value bioactive compounds such as diterpenoids since these are derived from metabolic building blocks that occur naturally within the organelle. However, synthesis of these complex plant metabolites requires the introduction of membrane-associated enzymes including cytochrome P450 enzymes (P450s).

View Article and Find Full Text PDF