Publications by authors named "Julie A Rhoades"

Article Synopsis
  • * LPSs vary in differentiation grade, affecting prognosis and metastasis risk, with recent findings suggesting that overexpression of Gli2 in dedifferentiated liposarcoma (DDLPS) cells hinders adipogenic differentiation and promotes osteoblast markers.
  • * The study also revealed changes in cytokine expression and macrophage populations in the tumor environment, specifically an increase in M2-like macrophages, suggesting that Gli2 influences both tumor cell differentiation and immune interactions in lip
View Article and Find Full Text PDF

The establishment and progression of bone metastatic breast cancer is supported by immunosuppressive myeloid populations that enable tumor growth by dampening the innate and adaptive immune response. Much work remains to understand how to target these tumor-myeloid interactions to improve treatment outcomes. Noncanonical Hedgehog signaling is an essential component of bone metastatic tumor progression, and prior literature suggests a potential role for Hedgehog signaling and its downstream effector Gli2 in modulating immune responses.

View Article and Find Full Text PDF

Due to the cellular plasticity that is inherent to cancer, the acquisition of resistance to therapy remains one of the biggest obstacles to patient care. In many patients, the surviving cancer cell subpopulation goes on to proliferate or metastasize, often as the result of dramatically altered cell signaling and transcriptional pathways. A notable example is the Hedgehog (Hh) signaling pathway, which is a driver of several cancer subtypes and aberrantly activated in a wide range of malignancies in response to therapy.

View Article and Find Full Text PDF

Liposarcomas are the most diagnosed soft tissue sarcoma, with most cases consisting of well-differentiated (WDLPS) or dedifferentiated (DDLPS) histological subtypes. While both tumor subtypes can have clinical recurrence due to incomplete resections, DDLPS often has worse prognosis due to a higher likelihood of metastasis compared to its well-differentiated counterpart. Unfortunately, targeted therapeutic interventions have lagged in sarcoma oncology, making the need for molecular targeted therapies a promising future area of research for this family of malignancies.

View Article and Find Full Text PDF

Unlabelled: When breast cancer metastasizes to bone, treatment options are limited. Failure to treat bone metastases is thought to be due to therapy-resistant features of the bone marrow microenvironment. Using a murine model of bone metastatic mammary carcinoma, we demonstrate that systemic delivery of polymer nanoparticles loaded with cyclic dinucleotide (CDN) agonists of stimulator of interferon genes (STING) inhibited tumor growth and bone destruction after 7 days of treatment.

View Article and Find Full Text PDF

Patients with advanced skeletal metastases arising from primary cancers including breast, lung, and prostate suffer from extreme pain, bone loss, and frequent fractures. While the importance of interactions between bone and tumors is well-established, our understanding of complex cell-cell and cell-microenvironment interactions remains limited in part due to a lack of appropriate 3D bone models. To improve our understanding of the influence of bone morphometric properties on the regulation of tumor-induced bone disease (TIBD), we utilized bone-like 3D scaffolds in vitro and in vivo.

View Article and Find Full Text PDF

Breast cancer patients are at high risk for bone metastasis. Metastatic bone disease is a major clinical problem that leads to a reduction in mobility, increased risk of pathologic fracture, severe bone pain, and other skeletal-related events. The transcription factor Gli2 drives expression of parathyroid hormone-related protein (PTHrP), which activates osteoclast-mediated bone destruction, and previous studies showed that Gli2 genetic repression in bone-metastatic tumor cells significantly reduces tumor-induced bone destruction.

View Article and Find Full Text PDF

Solid tumors frequently metastasize to bone and induce bone destruction leading to severe pain, fractures, and other skeletal-related events (SREs). Osteoclast inhibitors such as bisphosphonates delay SREs but do not prevent skeletal complications or improve overall survival. Because bisphosphonates can cause adverse side effects and are contraindicated for some patients, we sought an alternative therapy to reduce tumor-associated bone destruction.

View Article and Find Full Text PDF

Objective: Like most of the United States, school-based hearing screening in Pennsylvania focuses on low-frequency, conductive hearing losses typical for young children, rather than the high-frequency, noise-induced hearing loss more prevalent among adolescents. The objective of this study was to compare the sensitivity and specificity of current school hearing screening in Pennsylvania with hearing screening including high frequencies, designed to detect adolescent hearing loss.

Setting: A single public high school.

View Article and Find Full Text PDF

Objectives: To compare a protocol for pure-tone threshold testing, capable of detecting high-frequency hearing loss as indicated by notched audiometric configurations, with the current school rapid hearing screen and to determine typical adolescent noise exposures associated with notched audiometric configurations.

Design: In conjunction with required school rapid hearing screening, a pure-tone threshold testing protocol was administered, specifically to test hearing at high frequencies. A single audiologist reviewed the results.

View Article and Find Full Text PDF