Due to the complexity of estrogen signaling mediated by estrogen receptors (ERs) in a variety of biological environments, there is great interest in the identification and optimization of selective estrogen receptor ligands. Prodrugs that can be activated in specific environments allow for tissue selectivity. Therefore, there have been recent advances in the development of prodrugs for ERs that can be released through enzymatic reactions, chemical reactions (eg, oxidation by reactive oxygen species or reduction by ascorbic acid), or light-mediated processes.
View Article and Find Full Text PDFPhotoactivated chemotherapy (PACT) has emerged as a promising strategy to selectively target cancer cells by using light irradiation to generate cytotoxic complexes in situ through a mechanism involving ligand-loss. Due to their rich optical properties and excited state chemistry, Ru polypyridyl complexes have attracted significant attention for PACT. However, studying PACT is complicated by the fact that many of these Ru complexes can also undergo excited-state electron transfer to generate O species.
View Article and Find Full Text PDFCOVID-19 is a global pandemic caused by infection with the SARS-CoV-2 virus. Remdesivir, a SARS-CoV-2 RNA polymerase inhibitor, is the only drug to have received widespread approval for treatment of COVID-19. The SARS-CoV-2 main protease enzyme (M), essential for viral replication and transcription, remains an active target in the search for new treatments.
View Article and Find Full Text PDFAntibiotic-resistant infections are a pressing global concern, causing millions of deaths each year. Methicillin-resistant (MRSA) is a leading cause of nosocomial infections in healthcare settings and is increasingly responsible for community-acquired infections that are often more difficult to treat. Antibiotic adjuvants are small molecules that potentiate antibiotics through nontoxic mechanisms and show excellent promise as novel therapeutics.
View Article and Find Full Text PDFPhosphorylation-dependent protein-protein interactions play a significant role in biological signaling pathways; therefore, small molecules that are capable of influencing these interactions can be valuable research tools and have potential as pharmaceutical agents. MEMO1 (mediator of ErbB2-cell driven motility) is a phosphotyrosine-binding protein that interacts with a variety of protein partners and has been found to be upregulated in breast cancer patients. Herein, we report the first small-molecule inhibitors of MEMO1 interactions identified through a virtual screening platform and validated in a competitive fluorescence polarization assay.
View Article and Find Full Text PDFBiosensing strategies that employ readily adaptable materials for different analytes, can be miniaturized into needle electrode form, and function in bodily fluids represent a significant step toward the development of clinically relevant in vitro and in vivo sensors. In this work, a general scheme for 1st generation amperometric biosensors involving layer-by-layer electrode modification with enzyme-doped xerogels, electrochemically-deposited polymer, and polyurethane semi-permeable membranes is shown to achieve these goals. With minor modifications to these materials, sensors representing potential point-of-care medical tools are demonstrated to be sensitive and selective for a number of conditions.
View Article and Find Full Text PDFThe development and evaluation of selective estrogen receptor modulators (SERMs) is of interest because of the complex and significant role of estrogen receptors in normal tissues as well as disease states. In neurodegenerative disorders such as Alzheimer's disease and multiple sclerosis, estrogen receptor beta (ERβ) seems to provide a protective anti-inflammatory response. Due to the increase in reactive oxygen species (ROS) in these diseases, we have masked ERβ ligands, including diarylpropionitrile (DPN), as boronate esters that release the active estrogen in the presence of HO.
View Article and Find Full Text PDFA first-generation amperometric galactose biosensor has been systematically developed utilizing layer-by-layer (LbL) construction of xerogels, polymers, and carbon nanotubes toward a greater fundamental understanding of sensor design with these materials and the potential development of a more efficient galactosemia diagnostic tool for clinical application. The effect of several parameters (xerogel silane precursor, buffer pH, enzyme concentration, drying time and the inclusion of a polyurethane (PU) outer layer) on galactose sensitivity were investigated with the critical nature of xerogel selection being demonstrated. Xerogels formed from silanes with medium, aliphatic side chains were shown to exhibit significant enhancements in sensitivity with the addition of PU due to decreased enzyme leaching.
View Article and Find Full Text PDFModified electrodes featuring specific adsorption platforms able to access the electrochemistry of the copper containing enzyme galactose oxidase (GaOx) were explored, including interfaces featuring nanomaterials such as nanoparticles and carbon nanotubes (CNTs). Electrodes modified with various self-assembled monolayers (SAMs) including those with attached nanoparticles or amide-coupled functionalized CNTs were examined for their ability to effectively immobilize GaOx and study the redox activity related to its copper core. While stable GaOx electrochemistry has been notoriously difficult to achieve at modified electrodes, strategically designed functionalized CNT-based interfaces, cysteamine SAM-modified electrode subsequently amide-coupled to carboxylic acid functionalized single wall CNTs, were significantly more effective with high GaOx surface adsorption along with well-defined, more reversible, stable (≥ 8 days) voltammetry and an average ET rate constant of 0.
View Article and Find Full Text PDFThe immune system uses members of the toll-like receptor (TLR) family to recognize a variety of pathogen- and host-derived molecules in order to initiate immune responses. Although TLR-mediated, pro-inflammatory immune responses are essential for host defense, prolonged and exaggerated activation can result in inflammation pathology that manifests in a variety of diseases. Therefore, small-molecule inhibitors of the TLR signaling pathway might have promise as anti-inflammatory drugs.
View Article and Find Full Text PDFToll-like receptors (TLRs) recognize various pathogen- and host tissue-derived molecules and initiate inflammatory immune responses. Exaggerated or prolonged TLR activation, however, can lead to etiologically diverse diseases, such as bacterial sepsis, metabolic and autoimmune diseases, or stroke. Despite the apparent medical need, no small-molecule drugs against TLR pathways are clinically available.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) has a faster rate of metastasis compared to other breast cancer subtypes, and no effective targeted therapies are currently FDA-approved. Recent data indicate that the androgen receptor (AR) promotes tumor survival and may serve as a potential therapeutic target in TNBC. Studies of AR in disease progression and the systemic effects of anti-androgens have been hindered by the lack of an AR-positive (AR+) immunocompetent preclinical model.
View Article and Find Full Text PDFClinical resistance to the second-generation antiandrogen enzalutamide in castration-resistant prostate cancer (CRPC), despite persistent androgen receptor (AR) activity in tumors, highlights an unmet medical need for next-generation antagonists. We have identified and characterized tetra-aryl cyclobutanes (CBs) as a new class of competitive AR antagonists that exhibit a unique mechanism of action. These CBs are structurally distinct from current antiandrogens (hydroxyflutamide, bicalutamide, and enzalutamide) and inhibit AR-mediated gene expression, cell proliferation, and tumor growth in several models of CRPC.
View Article and Find Full Text PDFThe development of a reagent for the efficient synthesis of 5- and 6-membered azoles at room temperature is proposed. A variety of substituted 2-aminobenzimidazoles are synthesized in good to excellent yields. The ability to incorporate various protecting groups makes the imidoyl dichloride reagent amenable to a large number of syntheses.
View Article and Find Full Text PDFResveratrol has beneficial effects on aging, inflammation and metabolism, which are thought to result from activation of the lysine deacetylase, sirtuin 1 (SIRT1), the cAMP pathway, or AMP-activated protein kinase. In this study, we report that resveratrol acts as a pathway-selective estrogen receptor-α (ERα) ligand to modulate the inflammatory response but not cell proliferation. A crystal structure of the ERα ligand-binding domain (LBD) as a complex with resveratrol revealed a unique perturbation of the coactivator-binding surface, consistent with an altered coregulator recruitment profile.
View Article and Find Full Text PDFLysine specific demethylase 1 (LSD1, also known as KDM1) is a histone modifying enzyme that regulates the expression of many genes important in cancer progression and proliferation. It is present in various transcriptional complexes including those containing the estrogen receptor (ER). Indeed, inhibition of LSD1 activity and or expression has been shown to attenuate estrogen signaling in breast cancer cells in vitro, implicating this protein in the pathogenesis of cancer.
View Article and Find Full Text PDFA facile synthetic route to substituted trans-2-arylcyclopropylamines was developed to provide access to mechanism-based inhibitors of the human flavoenzyme oxidase lysine-specific histone demethylase LSD1 and related enzyme family members such as monoamine oxidases A and B.
View Article and Find Full Text PDF