Front Pain Res (Lausanne)
July 2021
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose limiting, and long-lasting side effect of chemotherapy treatment. Unfortunately, no treatment has proven efficacious for this side effect. Rodent models play a crucial role in the discovery of new mechanisms underlying the initiation, progression, and recovery of CIPN and the potential discovery of new therapeutics.
View Article and Find Full Text PDFPatients treated with cancer chemotherapeutics frequently report chemotherapy-induced peripheral neuropathy (CIPN), changes in mood (depression and anxiety) and functional impairments. Rodent models of CIPN elicit limited alterations in functional behaviors, which pose challenges in developing preclinical models of chemotherapy-induced behavioral depression. The study examined the consequences of chemotherapy-induced mechanical hypersensitivity (paclitaxel: 32 or 64 mg/kg, cumulative; oxaliplatin: 30 mg/kg, cumulative) on behavioral depression, as measured with operant responding for palatable food during periods of food restriction and ad libitum chow, consumption of noncontingently available palatable food in the presence of ad libitum chow, and voluntary wheel running.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2020
Rationale: Cancer patients receiving the antineoplastic drug paclitaxel report higher incidences and longer duration of treatment-resistant depression than patients receiving other classes of chemotherapeutics. Rodents treated with paclitaxel exhibit a suite of changes in affect-like behaviors. Further, paclitaxel causes chemotherapy-induced peripheral neuropathy (CIPN) in humans and rodents.
View Article and Find Full Text PDFBackground: Natural phenolic compounds in medicinal herbs and dietary plants are antioxidants which play therapeutic or preventive roles in different pathological situations, such as oxidative stress and inflammation. One of the most studied phenolic compounds in the last decade is chlorogenic acid (CGA), which is a potent antioxidant found in certain foods and drinks.
Objective: This review focuses on the anti-inflammatory and antinociceptive bioactivities of CGA, and the putative mechanisms of action are described.
Various antitumor drugs, including paclitaxel, frequently cause chemotherapy-induced peripheral neuropathy (CIPN) that can be sustained even after therapy has been completed. The current work was designed to evaluate R-47, an α7 nAChR silent agonist, in our mouse model of CIPN. R-47 was administered to male C57BL/6J mice prior to and during paclitaxel treatment.
View Article and Find Full Text PDFChemotherapy-induced peripheral neuropathy (CIPN), a consequence of peripheral nerve fiber dysfunction or degeneration, continues to be a dose-limiting and debilitating side effect during and/or after cancer chemotherapy. Paclitaxel, a taxane commonly used to treat breast, lung, and ovarian cancers, causes CIPN in 59-78% of cancer patients. Novel interventions are needed due to the current lack of effective CIPN treatments.
View Article and Find Full Text PDFRecently, α7 nicotinic acetylcholine receptors (nAChRs), primarily activated by binding of orthosteric agonists, represent a target for anti-inflammatory and analgesic drug development. These receptors may also be modulated by positive allosteric modulators (PAMs), ago-allosteric ligands (ago-PAMs), and α7-silent agonists. Activation of α7 nAChRs has been reported to increase the brain levels of endogenous ligands for nuclear peroxisome proliferator-activated receptors type-α (PPAR-α), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in a Ca-dependent manner.
View Article and Find Full Text PDFRationale: (-)-Stepholidine is a tetrahydroberberine alkaloid that is known to interact with dopamine receptors and has also been proposed as a novel antipsychotic agent. Its suggested novelty lies in the fact that it has been proposed to have D1-like receptor agonist and D2-like receptor antagonist properties. Thus, it might be effective in treating both positive and negative (cognition) symptoms of schizophrenia.
View Article and Find Full Text PDFA high-throughput screening campaign was conducted to interrogate a 380,000+ small-molecule library for novel D2 dopamine receptor modulators using a calcium mobilization assay. Active agonist compounds from the primary screen were examined for orthogonal D2 dopamine receptor signaling activities including cAMP modulation and β-arrestin recruitment. Although the majority of the subsequently confirmed hits activated all signaling pathways tested, several compounds showed a diminished ability to stimulate β-arrestin recruitment.
View Article and Find Full Text PDF