Low egg-producing turkeys reduce the profitability of a flock by limiting the number of poults that can be hatched. Understanding the biological mechanics behind egg-production rates will greatly benefit the industry. Two lines with vastly different egg production rates are the Ohio State University E line, and its unselected counterpart, the random-bred control one (RBC1).
View Article and Find Full Text PDFSperm storage within the uterovaginal junction (UVJ) of avian species occurs in specialized structures termed sperm storage tubules (SSTs) and allows for prolonged storage of semen, though the molecular mechanisms involved in semen preservation are not well understood. Little work has been done examining how function of the SSTs is impacted by insemination and by semen present in the SSTs. Transcriptome analysis was performed on isolated SSTs from turkey hens receiving no insemination (control), sham-insemination, or semen-insemination at three timepoints (D1, D30, and D90 post-insemination).
View Article and Find Full Text PDFBiobanking of turkey ovarian tissue has the potential to play a crucial part in preserving female genetics. To date, ovarian tissue has only been vitrified using a standard protocol, with immediate analyses after warming, therefore, long-term cryoinjury is unknown. Long-term cryoinjury was investigated here by in-ovo culturing, fresh (non-vitrified), a purposefully suboptimal poor vitrification (PV), and the standard vitrified (StV) protocol.
View Article and Find Full Text PDFThe preovulatory hormonal surge (PS) consists of elevated circulating luteinizing hormone (LH) and progesterone levels and serves as the primary trigger for ovarian follicle ovulation. Increased LH and progesterone, produced by the pituitary and the granulosa layer of the largest ovarian follicle (F1), respectively, result from hypothalamic stimulation and steroid hormone feedback on the hypothalamo-pituitary-gonadal (HPG) axis. The hypothalamus, pituitary, F1 granulosa, and granulosa layer of the fifth largest follicle (F5) were isolated from converter turkey hens outside and during the PS and subjected to RNA sequencing (n = 6 per tissue).
View Article and Find Full Text PDFBiobanked ovaries collected from recently hatched poults can only be revived through transplantation, using a recipient bird. The main hurdle in transplantation is preventing graft rejection, which appears as lymphocytic infiltration upon histologic evaluation of the graft. In this study, the condition of the transplants [immunological compatibility (auto- vs.
View Article and Find Full Text PDFLow and high egg producing hens exhibit gene expression differences related to ovarian steroidogenesis. High egg producing hens display increased expression of genes involved in progesterone and estradiol production, in the granulosa layer of the largest follicle (F1G) and small white follicles (SWF), respectively, whereas low egg producing hens display increased expression of genes related to progesterone and androgen production in the granulosa (F5G) and theca interna layer (F5I) of the fifth largest follicle, respectively. Transcriptome analysis was performed on F1G, F5G, F5I, and SWF samples from low and high egg producing hens to identify novel regulators of ovarian steroidogenesis.
View Article and Find Full Text PDFDysregulation of the preovulatory surge (PS) leads to lowered egg production. The hypothalamo-pituitary-thyroid (HPT) axis has been shown to influence plasma progesterone levels and follicle ovulation. The presence of thyroid hormone receptors (THR) in the reproductive axis suggests possible effects of thyroid hormone.
View Article and Find Full Text PDFLow-egg-producing hens (LEPH) ovulate less frequently than high-egg-producing hens (HEPH) and exhibit differences in mRNA levels for components of the hypothalamo-pituitary-gonadal (HPG) axis, suggesting differential responsiveness to trophic stimulation. Ovulation frequency is governed by the production of the pituitary gonadotropins and feedback of the ovarian follicle steroid hormones, which are regulated by HPG axis stimulation and inhibition at the hypothalamic level. The pituitary and follicle cells from LEPH and HEPH were subjected to in vitro hormonal treatments to stimulate or inhibit the HPG axis, followed by expression analysis of mRNA levels for HPG axis genes and radioimmunoassays for steroid hormone production.
View Article and Find Full Text PDFBackground: High egg producing hens (HEPH) show increased hypothalamic and pituitary gene expression related to hypothalamo-pituitary-gonadal (HPG) axis stimulation as well as increased in vitro responsiveness to gonadotropin releasing hormone (GnRH) stimulation in the pituitary when compared to low egg producing hens (LEPH). Transcriptome analysis was performed on hypothalamus and pituitary samples from LEPH and HEPH to identify novel regulators of HPG axis function.
Results: In the hypothalamus and pituitary, 4644 differentially expressed genes (DEGs) were identified between LEPH and HEPH, with 2021 genes up-regulated in LEPH and 2623 genes up-regulated in HEPH.
Fertility is an important economic trait in livestock and poultry that relies on the genetic merit of both males and females. Despite the importance of the paternal contribution to reproductive success, the preponderance of research has focused on the female. The advent of the 'omics' era has stimulated the search for accurate predictors of male fertility, which is especially important for animal production where the fertility status of males most often is not known until sexual maturity is reached, and methods to assess semen quality often are not correlated with fertility, especially subfertile males.
View Article and Find Full Text PDFVariation in egg production exists in commercial turkey hens, with low egg producing hens (LEPH) costing more per egg produced than high egg producing hens (HEPH). Egg production correlates with ovulation frequency, which is governed by the hypothalamic-pituitary-gonadal (HPG) axis. Ovulation is stimulated by a preovulatory surge (PS) of progesterone and luteinizing hormone, triggered by gonadotropin releasing hormone release and inhibited by gonadotropin inhibiting hormone.
View Article and Find Full Text PDFA preovulatory surge (PS) of luteinizing hormone (LH) and progesterone triggers follicle ovulation, which is the first step of egg production and is orchestrated by the hypothalamo-pituitary-gonadal (HPG) axis. In the HPG axis, hypothalamic peptides, gonadotropin releasing hormone, and gonadotropin inhibitory hormone, control the production of follicle stimulating hormone and LH by the pituitary, which subsequently regulate ovarian production of estradiol and progesterone, respectively. The goal of this study was to characterize the HPG axis function of average egg producing hens by assessing plasma hormone profiles and hypothalamic, pituitary, and follicle gene expression outside and during the PS (n = 3 per group).
View Article and Find Full Text PDFCell lines of turkey sperm storage tubule (SST) epithelial cells were established. Turkey SSTs were dissected from freshly obtained uterovaginal junction (UVJ) tissue and placed in explant culture on various substrates and media. Primary cultures of SST epithelium only survived and grew from SST explants that were cultured on inactivated Sandoz inbred strain, thioguanine- and ouabain-resistance (STO) mouse feeder-cell layers in 12% fetal bovine serum-supplemented Dulbecco's Modified Eagle Medium mixed 1:1 with F12 nutrient mixture.
View Article and Find Full Text PDFBackground: Sex-linked slow (SF) and fast (FF) feathering rates at hatch have been widely used in poultry breeding for autosexing at hatch. In chicken, the sex-linked K (SF) and k+ (FF) alleles are responsible for the feathering rate phenotype. Allele K is dominant and a partial duplication of the prolactin receptor gene has been identified as the causal mutation.
View Article and Find Full Text PDFThe objectives of this study were to examine morphological changes of oogonia and primordial follicles in the ovaries of turkey poults within the first week after hatching, and to evaluate the effect of cryopreservation on histology and apoptosis of these immature ovaries. Ovaries from poults at Day 1, Day 3, Day 5 and Day 7 post-hatch were cryopreserved using a modified vitrification method. The histology of oogonia and primordial follicles in fresh and cryopreserved tissue was assessed, and the apoptosis of tissue in different age groups was identified using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay.
View Article and Find Full Text PDFBackground: The domestic turkey (Meleagris gallopavo) is an important agricultural species that is largely used as a meat-type bird. Characterizing genetic variation in populations of domesticated species and associating these variation patterns with the evolution, domestication, and selective breeding is critical for understanding the dynamics of genomic change in these species. Intense selective breeding and population bottlenecks are expected to leave signatures in the genome of domesticated species, such as unusually low nucleotide diversity or the presence of exceptionally extended haplotype homozygosity.
View Article and Find Full Text PDFCryopreservation methods for poultry semen are not reliable for germplasm preservation, especially for turkeys, where fertility rates from frozen/thawed semen are particularly low. The objective was to evaluate cryopreservation methods for effectiveness in promoting cryosurvival and post-thaw function of sperm from five turkey lines: one commercial line and four research (RBC1; E; RBC2; F) lines from Ohio State University (OSU). The model for cryopreservation was set up as a 2×2×2×5 design for cryoprotectant (glycerol or dimethylacetamide (DMA)), cryopreservation medium (Lake or ASG), method of dilution (fixed dilution volume versus fixed sperm concentration) and turkey line, respectively.
View Article and Find Full Text PDFBackground: The turkey (Meleagris gallopavo) is an important agricultural species and the second largest contributor to the world's poultry meat production. Genetic improvement is attributed largely to selective breeding programs that rely on highly heritable phenotypic traits, such as body size and breast muscle development. Commercial breeding with small effective population sizes and epistasis can result in loss of genetic diversity, which in turn can lead to reduced individual fitness and reduced response to selection.
View Article and Find Full Text PDFA comparative approach was used to evaluate semen cooling rates, thawing rates and freezing volume on the cryosurvival of avian sperm. Turkey (Meleagris gallopavo) and sandhill crane (Grus canadensis) sperm were cryopreserved with dimethylacetamide (DMA) concentrations ranging from 6% to 26%. Experiments evaluated the efficacy of (1) rapid, moderate and slow cooling rates, (2) rapid and slow thawing rates, and (3) final volume of semen frozen (0.
View Article and Find Full Text PDFA comparative approach was used to evaluate the cryosurvival of turkey and crane sperm frozen in a dimethylacetamide (DMA) cryodiluent supplemented with osmoprotectants and ATP. A range (6-26%) of DMA concentrations was used alone or in combination with ATP (30, 60 or 118mM) or one of the following osmoprotectants: (1) sucrose (turkey, 8.0%; crane, 5.
View Article and Find Full Text PDFA synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo). Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.
View Article and Find Full Text PDFThe turkey sperm glycocalyx is known to contain residues of sialic acid, alpha-mannose/alpha-glucose, alpha- and beta-galactose, alpha-fucose, alpha- and beta-N-acetyl-galactosamine, monomers and dimers of N-acetyl-glucosamine, and N-acetyl-lactosamine. Potential changes in these carbohydrates during in vitro semen storage at 4 degrees C were evaluated using males of both high- and low-sperm-mobility phenotypes. Changes in carbohydrate residues were quantified by flow cytometry analysis using a battery of 14 fluorescein isothiocyanate-labeled lectins in combination with control (sialylated) or neuraminidase-treated (nonsialylated) sperm.
View Article and Find Full Text PDFIn this study the effects of different in vitro conditioning with transforming growth factor (TGF) beta1 on human monocyte-derived DC maturation (hMo-DC) were investigated. hMo-DC differentiated in the presence of physiologically relevant concentrations of TGFbeta1 (2 ng/ml) failed to undergo complete maturation despite adequate stimulation with LPS or LPS+IFNgamma. These hMo-DC did not produce IL-12p70 or PGE2, and showed decreased IL-10 and IL-18 production and HLA-DR expression.
View Article and Find Full Text PDFPotential factors influencing sperm survival under hypertonic conditions were evaluated in the Sandhill crane (Grus canadensis) and turkey (Meleagridis gallopavo). Sperm osmotolerance (300-3000 mOsm/kg) was evaluated after: (1) equilibration times of 2, 10, 45 and 60 min at 4 degrees C versus 21 degrees C; (2) pre-equilibrating with dimethylacetamide (DMA) or dimethylsulfoxide (Me2SO) at either 4 degrees C or 21 degrees C; and (3) inhibition of the Na+/K+ and the Na+/H+ antiporter membrane ionic pumps. Sperm viability was assessed using the eosin-nigrosin live/dead stain.
View Article and Find Full Text PDFThe aim of the present work was to use a battery of lectins to 1) delineate the carbohydrate content of sperm glycocalyx in the turkey and chicken using flow cytometry analysis, and 2) evaluate the distribution of existing sugars over the sperm plasma membrane surface with epifluorescent microscopy. Carbohydrate groups (corresponding lectins) that were investigated included galactose (GS-I, Jacalin, RCA-I, PNA), glucose and/or mannose (Con A, PSA, GNA), N-acetyl-glucosamine (GS-II, s-WGA, STA), N-acetyl-galactosamine (SBA, WFA), fucose (Lotus, UEA-I), sialic acid (LFA, LPA), and N-acetyl-lactosamine (ECA). Spermatozoa were assessed before and after treatment with neuraminidase to remove sialic acid.
View Article and Find Full Text PDF