Epstein-Barr virus latent membrane protein 2A (LMP2A) induces many characteristics of carcinoma, including transformation, migration, invasion, and impaired differentiation. The MCF10A cell line differentiates to form hollow acini when grown in Matrigel, and expression of LMP2A inhibited differentiation and anoikis induced by loss of matrix attachment. LMP2A-infected cells formed large, lobular structures rather than hollow acini.
View Article and Find Full Text PDFEpstein-Barr virus (EBV) is a gammaherpesvirus associated with numerous cancers, including the epithelial cancers nasopharyngeal carcinoma (NPC) and gastric carcinoma. The latent membrane protein 2 (LMP2) encoded by EBV is consistently detected in NPC tumors and promotes a malignant phenotype when expressed in epithelial cells by inducing transformation and migration and inhibiting differentiation. Grown in three dimensions (3D) on Matrigel, the nontumorigenic mammary epithelial cell line MCF10A forms hollow, spherical acinar structures that maintain normal glandular features.
View Article and Find Full Text PDFEpstein-Barr virus (EBV) is a highly prevalent herpesvirus associated with epithelial cancers, including nasopharyngeal carcinoma (NPC). The EBV protein latent membrane protein 2 (LMP2) is expressed in NPC tumor tissue and has been shown to induce transformation, inhibit differentiation, and promote migration of epithelial cells. In this study, the effect of LMP2A on migration of human epithelial cells was further analyzed.
View Article and Find Full Text PDFAdenosine receptor agonists have anti-inflammatory properties and modulate immune responses partly by inhibiting pro-inflammatory cytokine production by monocytes. We investigated signal transduction mechanisms by which adenosine receptor activation inhibits tumor necrosis factor-alpha (TNF-alpha) production. Phorbol-12-myristate-13-acetate (PMA) and phytohemagglutinin treatment of human pro-monocytic U937 cells increased TNF-alpha protein release.
View Article and Find Full Text PDF