Low-temperature solution-processed CH3 NH3 PbI3 interfaced with TiO2 has recently been demonstrated as a highly successful type-II light harvesting heterojunction with ≈20% efficiency. Therefore, an efficient ultrafast photoexcited electron transfer from CH3 NH3 PbI3 to TiO2 is expected. However, by probing the photoexcited charge carrier dynamics in CH3 NH3 PbI3 /quartz, CH3 NH3 PbI3 /TiO2 (compact), and CH3 NH3 PbI3 /PCBM in a comparative study, an electron transfer potential barrier between CH3 NH3 PbI3 and the compact TiO2 (prepared with the spray pyrolysis method) formed by surface states is uncovered.
View Article and Find Full Text PDFLow-temperature solution-processed organic-inorganic halide perovskite CH3NH3PbI3 has demonstrated great potential for photovoltaics and light-emitting devices. Recent discoveries of long ambipolar carrier diffusion lengths and the prediction of the Rashba effect in CH3NH3PbI3, that possesses large spin-orbit coupling, also point to a novel semiconductor system with highly promising properties for spin-based applications. Through circular pump-probe measurements, we demonstrate that highly polarized electrons of total angular momentum (J) with an initial degree of polarization Pini ∼90% (i.
View Article and Find Full Text PDFA low temperature route to synthesize graphene oxide-Pt nanoparticle hybrid composite by light assisted spontaneous coreduction of graphene oxide and chloroplatinic acid without reducing agent is demonstrated. Analysis indicates the importance of light as energy provider and ethanol as hole scavenger in the formation of small Pt nanoparticles (∼3 nm) on graphene oxide as well as graphene oxide reduction. Spray coating was used to deposit the hybrid material as a counter electrode in dye sensitized solar cells (DSCs).
View Article and Find Full Text PDFWe describe the application of 3-dimensional metal grid electrodes (3D-MGEs) as electron collectors in dye-sensitized solar cells (DSCs) as a replacement for fluorinated tin oxide (FTO) electrodes. Requirements, structure, advantages, and limitations of the metal grid electrodes are discussed. Solar conversion efficiencies of 6.
View Article and Find Full Text PDF