Publications by authors named "Juliano Elvis de Oliveira"

Emulsions were prepared from T. vulgaris essential oil using the surfactants Pluronic F127 and Tween 80 by mechanical agitation (Emulsion_Tw and Emulsion_Pl) and sonication using an ultrasonic tip (Sonicated_emulsion_Tw and Sonicated_emulsion_Pl). These emulsions were incorporated into pectin films.

View Article and Find Full Text PDF

Food contamination by mycotoxigenic fungi is one of the principal factors that cause food loss and economic losses in the food industry. The objective of this work was to incorporate the essential oil from Corymbia citriodora Hook and its constituents citronellal and β-citronellol into poly(lactic acid) nanofibers; to characterize the nanofibers by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimetry; to evaluate the antifungal activity by the fumigation method; to evaluate the antimycotoxigenic activity against Aspergillus carbonarius, Aspergillus ochraceus, Aspergillus westerdijkiae, Aspergillus flavus, and Aspergillus parasiticus; and to evaluate the morphology of these microorganisms. All the nanofibers had a regular, smooth, and continuous morphology.

View Article and Find Full Text PDF

Free formaldehyde is a carcinogen whose emission reduction in particleboard has been studied recently to mitigate this environmental and human health problem. One alternative to reduce the emission of formaldehyde in particleboards is by using adhesives produced from natural sources. Cardanol-formaldehyde is an environmentally friendly adhesive made with cashew nut liquid, a byproduct from the cashew chain.

View Article and Find Full Text PDF

The table grape is a non-climateric fruit that is very susceptible to fungal contamination, in addition to suffering an accelerated loss of quality during storage. The in vitro and in grape antifungal and antiocratoxigenic effects of the essential oils from Alpinia speciosa and Cymbopogon flexuosus against Aspergillus carbonarius and Aspergillus niger were studied. The oils were encapsulated in poly(lactic acid) (PLA) nanofibers as a potential active packaging to be applied to control the degradation of grapes stored during the post-harvest period.

View Article and Find Full Text PDF

Apergillus carbonarius and Aspergillus niger are the principal fungi that attack table grapes, and they are responsible for producing and contaminating these fruits with ochratoxin A. Packaging containing essential oils from Ocimum gratissimum L. and Ocimum basilicum L.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) nanofibres containing different proportions of the essential oils from Ocimum basilicum L. and Ocimum gratissimum L. were prepared by solution blow spinning method.

View Article and Find Full Text PDF

The aim of this study was to develop polymeric nanofibers for controlled administration of Amphotericin B (AmpB), using the solution centrifugation technique, characterizing its microstructural and physical properties, release rate, and activity against and species. The core-shell nanofibers incorporated with AmpB were synthesized by Solution Blow Spinning (SBS) and characterized by scanning electron microscopy (SEM), differential scanning calorimetry, X-Ray diffraction, and drug release assay. leishmanicidal and antifungal activity were also evaluated.

View Article and Find Full Text PDF

The main objective of this study was to evaluate the effect of the addition of different concentrations of CMC (0, 20, 40, 60, 80 and 100 %) on the mechanical and water vapor barrier properties in corn starch films produced by casting. The addition of CMC 40 % was sufficient to significantly increase its mechanical properties (tensile strength, elongation at break and elastic modulus), and water vapor barrier of the starch films, thus improving its functionality as a packaging material for food. CMC incorporation led to a small reduction in the thermal stability of the films.

View Article and Find Full Text PDF

The effect of silver nanoparticles (AgNPs) on plant cells, since their phytotoxicity potential is not yet fully understood. In this context, the aim of the present study was to elucidate the effects of AgNPs in the in vitro culture of . For this purpose, seeds were grown in MS medium supplemented with different concentrations of AgNPs.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to create bio-based thin films using cellulose and chitosan, and assess the effects of adding magnetite and glycerol on their properties.
  • The films displayed a good distribution of materials and showed improved flexibility and wettability, while maintaining thermal stability up to 150°C; glycerol enhanced these attributes but reduced barrier properties.
  • With the inclusion of magnetite and glycerol, the dielectric constant of the films significantly increased, indicating potential for use as eco-friendly insulators in capacitors, contributing to the reduction of e-waste.
View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) were extracted from Eucalyptus kraft pulp by sulfuric acid hydrolysis, and esterified with maleic anhydride (CNC). The incorporation of sulfate ester groups on the cellulose surface resulted in higher stability of the nanoparticles in aqueous suspensions and lower thermal stability. Then, PLA/CNC and PLA/CNC nanocomposites were successfully obtained by solution blow spinning (SBS) using dimethyl carbonate (DMC) as solvent.

View Article and Find Full Text PDF

Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4) D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding.

View Article and Find Full Text PDF