Publications by authors named "Juliano A Chaker"

This study presents an optimized microwave-assisted method for the green synthesis of silver nanoparticles (AgNPs) using a root extract obtained from DC. The influence of temperature, reagent concentration, and irradiation time was systematically investigated to enhance synthesis yield. Characterization techniques including XRD, UV-vis, FTIR, XPS, and zetametry were employed to confirm the successful formation of nanoparticles with a metallic silver core (∼17 nm) functionalized with organic molecules derived from the plant extract.

View Article and Find Full Text PDF

It is well known that the splitting of tablets can bring serious risks to the health of the treated animals, e.g., the possible adverse reactions caused by overdoses of fenbendazole or aspirin.

View Article and Find Full Text PDF

The influence of hydrogels on the nanostructural formation of siloxane-polyether nanocomposites was examined. The nanostructure was studied with small-angle X-ray scattering (SAXS) to determine the siloxane nanostructure aggregation mechanisms. The interactions between matrix and drug were examined by infrared spectroscopy to verify the compatibility of the drug with the matrix.

View Article and Find Full Text PDF

An aggregation-induced emission enhancement (AIEE) effect in fluorescent lipophilic 2,1,3-benzothiadiazole (BTD) derivatives and their organic nanoaggregates were studied. A set of techniques such as single-crystal X-ray, dynamic light scattering (DLS), electron paramagnetic resonance (EPR), UV-vis, fluorescence, and density functional theory (DFT) calculations have been used to decipher the formation/break (kinetics), properties, and dynamics of the organic nanoaggregates of three BTD small organic molecules. An in-depth study of the excited-state also revealed the preferential relaxation emissive pathways for the BTD derivatives and the dynamics associated with it.

View Article and Find Full Text PDF

Here, we assessed the feasibility of hot-melt extrusion (HME) to obtain effervescent drug products for the first time. For this, a combined mixture design was employed using paracetamol as a model drug. Extrudates were obtained under reduced torque (up to 0.

View Article and Find Full Text PDF

The present study aimed to analyze how the printing process affects the final state of a printed pharmaceutical product and to establish prediction models for post-printing characteristics according to basic printing settings. To do this, a database was constructed through analysis of products elaborated with a distinct printing framework. The polymers acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and high-impact polystyrene (HIPS) were tested in a statistically-based experiment to define the most critical printing factors for mass, mass variation, printing time, and porosity.

View Article and Find Full Text PDF

We describe here a green method for the preparation of silver nanoparticles (AgNPs), by a microwave-assisted synthesis route using underbark extract, with antibacterial activity. After optimizing the synthesis parameters with a Box-Benhken designed experiment, samples were characterized by powder XRD, TEM, UV-Vis spectroscopy, FTIR and zetametry. Using the overall optimized conditions of synthesis - time of reaction 15 min at 200 °C and plant extract/AgNO volume ratio equal to 10% - highly crystalline ∼13.

View Article and Find Full Text PDF

In this work, we describe the preparation and characterization of highly magnetizable chloromethylated polystyrene-based nanocomposite beads. For synthesis optimization, acid-resistant core-shelled maghemite (γ-FeO) nanoparticles are coated with sodium oleate and directly incorporated into the organic medium during a suspension polymerization process. A crosslinking agent, ethylene glycol dimethacrylate, is used for copolymerization with 4-vinylbenzyl chloride to increase the resistance of the microbeads against leaching.

View Article and Find Full Text PDF

The development of supported catalysts based on simple procedures without waste products and time-consuming steps is highly desirable. In this paper, self-supported nickel-based nanoparticles were obtained at the surface of the germanophosphate glasses by bottom-up process and evaluated as potential catalysts for the benzyl alcohol oxidation and bis(indolyl)methanes synthesis. A classical melt-quenching technique was used for preparing the nickel-doped germanophosphate glasses, followed by annealing under a hydrogen atmosphere at 400 °C for two different times.

View Article and Find Full Text PDF

Remotely assisted drug delivery by means of magnetic biopolymeric nanoplatforms has been utilized as an important tool to improve the delivery/release of hydrophobic drugs and to address their low cargo capacity. In this work, MnFeO magnetic nanoparticles (MNPs) were synthesized by thermal decomposition, coated with citrate and then functionalized with the layer-by-layer (LbL) assembly of polyelectrolyte multilayers, with chitosan as polycation and sodium alginate as polyanion. Simultaneous conductimetric and potentiometric titrations were employed to optimize the LbL deposition and to enhance the loading capacity of nanoplatforms for curcumin, a hydrophobic drug used in cancer treatment.

View Article and Find Full Text PDF

This work aimed at obtaining an optimized itraconazole (ITZ) solid oral formulation in terms of palatability and dissolution rate by combining different polymers using hot melt extrusion (HME), according to a simplex centroid mixture design. For this, the polymers Plasdone (poly(1-vinylpyrrolidone-co-vinyl acetate) [PVP/VA]), Klucel ELF (2-hydroxypropyl ether cellulose [HPC]), and Soluplus (SOL, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol) were processed using a laboratory HME equipment operating without recirculation at constant temperature. Samples were characterized by physicochemical assays, as well as dissolution rate and palatability using an e-tongue.

View Article and Find Full Text PDF

Maghemite nanoparticles (MNPs) were functionalized with glycine, by a cost-effective and environmentally friendly procedure, as an alternative route to typical amine-functionalized polymeric coatings, for highly efficient removal of copper ions from water. MNPs were synthesized by co-precipitation method and adsorption of glycine was investigated as a function of ligand concentration and pH. The efficiency of these functionalized nanoparticles for removal of Cu(2+) from water has been explored and showed that adsorption is highly dependent of pH and that it occurs either by forming chelate complexes and/or by electrostatic interaction.

View Article and Find Full Text PDF