One of the greatest challenges with lithium-oxygen batteries involves identifying catalysts that facilitate the growth and evolution of cathode species on an oxygen electrode. Heterogeneous solid catalysts cannot adequately address the problematic overpotentials when the surfaces become passivated. However, there exists a class of biomolecules which have been designed by nature to guide complex solution-based oxygen chemistries.
View Article and Find Full Text PDFThe solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc.
View Article and Find Full Text PDFThis paper introduces Ir(I)(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*Ir(III)(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors.
View Article and Find Full Text PDFOrganometallic Ir precatalysts have been found to yield homogeneous Ir-based water-oxidation catalysts (WOCs) with very high activity. The Cp*Ir catalyst series can operate under a variety of regimes: it can either act as a homogeneous or a heterogeneous catalyst; it can be driven by chemical, photochemical, or electrochemical methods; and the molecular catalyst can either act in solution or supported as a molecular unit on a variety of solid oxides. In addition to optimizing the various reaction conditions, work has continued to elucidate the catalyst activation mechanism and identify water-oxidation intermediates.
View Article and Find Full Text PDFMolecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation.
View Article and Find Full Text PDFOrganometallic iridium complexes bearing oxidatively stable chelate ligands are precursors for efficient homogeneous water-oxidation catalysts (WOCs), but their activity in oxygen evolution has so far been studied almost exclusively with sacrificial chemical oxidants. In this report, we study the electrochemical activation of Cp*Ir complexes and demonstrate true electrode-driven water oxidation catalyzed by a homogeneous iridium species in solution. Whereas the Cp* precursors exhibit no measurable O2-evolution activity, the molecular species formed after their oxidative activation are highly active homogeneous WOCs, capable of electrode-driven O2 evolution with high Faradaic efficiency.
View Article and Find Full Text PDFA series of Cp*Ir dimers have been synthesized to elucidate the mechanistic viability of radical oxo-coupling pathways in iridium-catalyzed O evolution. The oxidative stability of the precursors toward nanoparticle formation and their oxygen evolution activity have been investigated and compared to suitable monomeric analogues. We found that precursors bearing monodentate NHC ligands degraded to form nanoparticles (NPs), and accordingly their O evolution rates were not significantly influenced by their nuclearity or distance between the two metals in the dimeric precursors.
View Article and Find Full Text PDFCp*Ir and CpIr complexes have attracted interest as catalysts for oxidative transformations, and highly oxidizing iridium species are postulated as key intermediates in both catalytic water and C-H bond oxidation. Strongly electron-donating ligand sets have been shown to stabilize Ir complexes. We describe the synthesis and reactivity of complexes containing the CpIr(biphenyl-2,2'-diyl) moiety stabilized by a series of strong donor carbon-based ligands.
View Article and Find Full Text PDF