Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST's Mid-Infrared Instrument.
View Article and Find Full Text PDFThe recent inference of sulfur dioxide (SO) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations suggests that photochemistry is a key process in high-temperature exoplanet atmospheres. This is because of the low (<1 ppb) abundance of SO under thermochemical equilibrium compared with that produced from the photochemistry of HO and HS (1-10 ppm). However, the SO inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.
View Article and Find Full Text PDFTraditionally, the search for life on exoplanets has been predominantly focused on rocky exoplanets. The recently proposed Hycean worlds have the potential to significantly expand and accelerate the search for life elsewhere. Hycean worlds are a class of habitable sub-Neptunes with planet-wide oceans and H-rich atmospheres.
View Article and Find Full Text PDFMeasuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 μm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref.
View Article and Find Full Text PDFA time-variable 1D photochemical model is used to study the distribution of stratospheric hydrocarbons as a function of altitude, latitude, and season on Uranus and Neptune. The results for Neptune indicate that in the absence of stratospheric circulation or other meridional transport processes, the hydrocarbon abundances exhibit strong seasonal and meridional variations in the upper stratosphere, but that these variations become increasingly damped with depth due to increasing dynamical and chemical time scales. At high altitudes, hydrocarbon mixing ratios are typically largest where the solar insolation is the greatest, leading to strong hemispheric dichotomies between the summer-to-fall hemisphere and winter-to-spring hemisphere.
View Article and Find Full Text PDFCharacterizing the atmospheres of extrasolar planets is the new frontier in exoplanetary science. The last two decades of exoplanet discoveries have revealed that exoplanets are very common and extremely diverse in their orbital and bulk properties. We now enter a new era as we begin to investigate the chemical diversity of exoplanets, their atmospheric and interior processes, and their formation conditions.
View Article and Find Full Text PDFChemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters.
View Article and Find Full Text PDFUsing one-dimensional thermochemical/photochemical kinetics and transport models, we examine the chemistry of nitrogen-bearing species in the Jovian troposphere in an attempt to explain the low observational upper limit for HCN. We track the dominant mechanisms for interconversion of N2-NH3 and HCN-NH3 in the deep, high-temperature troposphere and predict the rate-limiting step for the quenching of HCN at cooler tropospheric altitudes. Consistent with some other investigations that were based solely on time-scale arguments, our models suggest that transport-induced quenching of thermochemically derived HCN leads to very small predicted mole fractions of hydrogen cyanide in Jupiter's upper troposphere.
View Article and Find Full Text PDF