Microfluidic impedance cytometry has been demonstrated as an effective platform for single cell analysis, taking advantage of microfabricated features and dielectric cell sensing methods. In this study, we present a simple microfluidic device to improve the sensitivity, accuracy, and throughput of single suspension cell viability analysis using vertical sidewall electrodes fabricated by a widely accessible negative manufacturing method. A microchannel milled through a 75 µm platinum wire, which was embedded into poly-methyl-methacrylate (PMMA), created a pair of parallel vertical sidewall platinum electrodes.
View Article and Find Full Text PDFIn this study, we demonstrate that the presence of serum in different media plays an important role in inducing transient and reversible adhesion in Jurkat suspension cells. Attachment of Jurkat cells in two distinct media formulations (serum-fortified and serum-free) to untreated polystyrene (PS), plasma-treated PS, and fibronectin-coated PS was compared. Additional analysis characterized the occurrence of this transient cell adhesion, including attachment rate, reversibility of attachment, and viability and preservation of phenotype in cells during and after attachment.
View Article and Find Full Text PDF