The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA methylation datasets on a collection of breast brain metastases.
View Article and Find Full Text PDFUnlabelled: Of the features that characterize glioblastoma, arguably none is more clinically relevant than the propensity of malignant glioma cells to aggressively invade into the surrounding normal brain tissue. These invasive cells render complete resection impossible, confer significant resistance to chemo- and radiation-therapy, and virtually assure tumor recurrence. Expression of TROY (TNFRSF19), a member of the TNF receptor superfamily, inversely correlates with patient survival and stimulates glioblastoma cell migration and invasion in vitro.
View Article and Find Full Text PDFBackground: Glioblastoma (GB) is the most common and lethal type of primary brain tumor. Clinical outcome remains poor and is essentially palliative due to the highly invasive nature of the disease. A more thorough understanding of the molecular mechanisms that drive glioma invasion is required to limit dispersion of malignant glioma cells.
View Article and Find Full Text PDFMalignant glioblastomas are characterized by their ability to infiltrate into normal brain. We previously reported that binding of the multifunctional cytokine TNF-like weak inducer of apoptosis (TWEAK) to its receptor fibroblast growth factor-inducible 14 (Fn14) induces glioblastoma cell invasion via Rac1 activation. Here, we show that Cdc42 plays an essential role in Fn14-mediated activation of Rac1.
View Article and Find Full Text PDFBrain metastasis (BM) can affect ∼ 25% of nonsmall cell lung cancer (NSCLC) patients during their lifetime. Efforts to characterize patients that will develop BM have been disappointing. microRNAs (miRNAs) regulate the expression of target mRNAs.
View Article and Find Full Text PDFThe s allele serotonin transporter polymorphic region (5-HTTLPR) is associated with a number of physiological mechanisms that may increase the risk of elevated depressive symptoms. However, reports of a relationship between serotonin transporter polymorphic region (5-HTTLPR) genotype and depressive symptoms have thus far been inconclusive. This heterogeneity of results suggests that other factors may be moderating the relationship between 5-HTTLPR and depressive symptoms.
View Article and Find Full Text PDFMed Sci Sports Exerc
November 2010
Introduction: Exercise is effective in the alleviation of depressive symptoms and may have physiological effects similar to those of selective serotonin reuptake inhibitors (SSRI). Recent research has identified the difference in treatment effects across genetic polymorphisms of the serotonin transporter polymorphic region (5-HTTLPR), in which the l allele has been associated with a better response to SSRI compared with the s allele. The purpose of the current research was to examine the antidepressant effects of exercise across 5-HTTLPR genotypes.
View Article and Find Full Text PDF