Publications by authors named "Juliann Tierney"

[structure: see text] The synthesis and UV-vis and NMR spectroscopic studies of thiourea-based colorimetric sensors for anions are presented. These sensors can recognize anions through hydrogen binding even in competitive pH-buffered aqueous solutions, giving rise to large color changes that are clearly visible to the naked eye.

View Article and Find Full Text PDF

This mini review highlights the synthesis and photophysical evaluation of anion sensors, for nonaqueous solutions, that have been developed in our laboratories over the last few years. We have focused our research mainly on developing fluorescent photoinduced electron transfer (PET) sensors based on the fluorophore-spacer-anion receptor principle using several anthracene (emitting in the blue) and 1,8-naphthalimide (emitting in the green) fluorophores, with the aim of targeting biologically and industrially relevant anions such as acetates, phosphate and amino acids, as well as halides such as fluoride. The receptors and the fluorophore are separated by a short methyl or ethyl spacer, where the charge neutral anion receptors are either aliphatic or aromatic urea (or thiourea) moieties.

View Article and Find Full Text PDF

The synthesis of four fluorescent photoinduced electron transfer (PET) chemosensors 1-4 for anions is described. These are all based on a simple design employing charge neutral aliphatic or aromatic thiourea anion receptors connected to an anthracene fluorophore via a methylene spacer. Here the anion recognition occurred through 1 : 1 hydrogen bonding between the thiourea protons and the anion, as demonstrated by observing the changes in the (1)H NMR in DMSO-d(6) where the two thiourea protons were shifted downfield upon addition of anions.

View Article and Find Full Text PDF