Publications by authors named "Juliann Saputo"

Clostridium perfringens enterotoxin (CPE) is responsible for causing the gastrointestinal symptoms of C. perfringens type A food poisoning, the second most commonly identified bacterial food-borne illness in the United States. CPE is produced by sporulating C.

View Article and Find Full Text PDF

Clostridium perfringens type C isolates cause enterotoxemias and enteritis in humans and livestock. While the major disease signs and lesions of type C disease are usually attributed to beta toxin (CPB), these bacteria typically produce several different lethal toxins. Since understanding of disease pathogenesis and development of improved vaccines is hindered by the lack of small animal models mimicking the lethality caused by type C isolates, in this study we developed two mouse models of C.

View Article and Find Full Text PDF

Enterotoxemia caused by Clostridium perfringens type D in sheep is believed to result from the action of epsilon toxin (ETX). However, the sole role of ETX in the intestinal changes of the acute and chronic forms of enterotoxemia in goats remains controversial, and the synergistic action of other C. perfringens toxins has been suggested previously.

View Article and Find Full Text PDF

Clostridium perfringens type B and type C isolates, which produce beta-toxin (CPB), cause fatal diseases originating in the intestines of humans or livestock. Our previous studies demonstrated that CPB is necessary for type C isolate CN3685 to cause bloody necrotic enteritis in a rabbit ileal loop model and also showed that purified CPB, in the presence of trypsin inhibitor (TI), can reproduce type C pathology in rabbit ileal loops. We report here a more complete characterization of the effects of purified CPB in the rabbit small and large intestines.

View Article and Find Full Text PDF

Clostridium perfringens enterotoxin (CPE) causes the symptoms of a very common food poisoning. To assess whether CPE-induced cytotoxicity is necessary for enterotoxicity, a rabbit ileal loop model was used to compare the in vivo effects of native CPE or recombinant CPE (rCPE), both of which are cytotoxic, with those of the noncytotoxic rCPE variants rCPE D48A and rCPE(168-319). Both CPE and rCPE elicited significant fluid accumulation in rabbit ileal loops, along with severe mucosal damage that starts at villus tips and then progressively affects the entire villus, including necrosis of epithelium and lamina propria, villus blunting and fusion, and transmural edema and hemorrhage.

View Article and Find Full Text PDF

Clostridium perfringens type C isolates, which cause enteritis necroticans in humans and enteritis and enterotoxaemias of domestic animals, typically produce (at minimum) beta toxin (CPB), alpha toxin (CPA) and perfringolysin O (PFO) during log-phase growth. To assist development of improved vaccines and therapeutics, we evaluated the contribution of these three toxins to the intestinal virulence of type C disease isolate CN3685. Similar to natural type C infection, log-phase vegetative cultures of wild-type CN3685 caused haemorrhagic necrotizing enteritis in rabbit ileal loops.

View Article and Find Full Text PDF

Isolates of Clostridium perfringens type D produce the potent epsilon-toxin (a CDC/U.S. Department of Agriculture overlap class B select agent) and are responsible for several economically significant enterotoxemias of domestic livestock.

View Article and Find Full Text PDF