Publications by authors named "Juliane Stieber"

Several studies implicated cyclic adenosine monophosphate (cAMP) as an important second messenger for regulating nociceptor sensitization, but downstream targets of this signaling pathway which contribute to neuronal plasticity are not well understood. We used a Cre/loxP-based strategy to disable the function of either HCN2 or PKA selectively in a subset of peripheral nociceptive neurons and analyzed the nociceptive responses in both transgenic lines. A near-complete lack of sensitization was observed in both mutant strains when peripheral inflammation was induced by an intradermal injection of 8br-cAMP.

View Article and Find Full Text PDF

In critically ill patients regulation of heart-rate is often severely disturbed. Interaction of bacterial endotoxin (lipopolysaccharide, LPS) with hyperpolarization-activated cyclic nucleotide-gated cation-(HCN)-channels may interfere with heart-rate regulation. This study analyzes the effect of LPS, the HCN-channel blocker ivabradine or Ca(2+) -channel blockers (nifedipine, verapamil) on pacemaking in spontaneously beating neonatal rat cardiomyocytes (CM) in vitro.

View Article and Find Full Text PDF

Therapeutic approaches for "sick sinus syndrome" rely on electrical pacemakers, which lack hormone responsiveness and bear hazards such as infection and battery failure. These issues may be overcome via "biological pacemakers" derived from pluripotent stem cells (PSCs). Here, we show that forward programming of PSCs with the nodal cell inducer TBX3 plus an additional Myh6-promoter-based antibiotic selection leads to cardiomyocyte aggregates consisting of >80% physiologically and pharmacologically functional pacemaker cells.

View Article and Find Full Text PDF

Aims: The complex molecular mechanisms underlying spontaneous cardiac pacemaking are not fully understood. Recent findings point to a co-ordinated interplay between intracellular Ca(2+) cycling and plasma membrane-localized cation transport determining the origin and periodicity of pacemaker potentials. The sodium-calcium exchanger (NCX1) is a key sarcolemmal protein for the maintenance of calcium homeostasis in the heart.

View Article and Find Full Text PDF

Common cardiovascular progenitor cells are characterized and induced by expression of the transcription factor MesP1. To characterize this population we used a 3.4-kb promoter fragment previously described by our group.

View Article and Find Full Text PDF

Aims: Cardiac hypertrophy is accompanied by reprogramming of gene expression, where the altered expression of ion channels decreases electrical stability and increases the risk of life-threatening arrhythmias. However, the underlying mechanisms are not fully understood. Here, we analysed the role of the depolarizing current I(f) which has been hypothesized to contribute to arrhythmogenesis in the hypertrophied ventricle.

View Article and Find Full Text PDF

Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2.

View Article and Find Full Text PDF

Rationale: The hyperpolarization-activated current I(h) that is generated by hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) plays a key role in the control of pacemaker activity in sinoatrial node cells of the heart. By contrast, it is unclear whether I(h) is also relevant for normal function of cardiac ventricles.

Objective: To study the role of the HCN3-mediated component of ventricular I(h) in normal ventricular function.

View Article and Find Full Text PDF

Aims: The proliferative potential of pluripotent stem cell-derived cardiomyocytes is limited, and reasonable yields for novel therapeutic options have yet to be achieved. In addition, various clinical applications will require the generation of specific cardiac cell types. Whereas early cardiovascular precursors appear to be important for novel approaches such as reseeding decellularized hearts, direct cell transplantation may require ventricular cells.

View Article and Find Full Text PDF

Pacemaker activity of the heart is generated by a small group of cells forming the sinoatrial node (SAN). Cells of the SAN are spontaneously active and generate action potentials with remarkable regularity and stability under all physiological conditions. The exact molecular mechanisms underlying pacemaker potentials in the SAN have not yet been fully elucidated.

View Article and Find Full Text PDF

Ivabradine has been approved as a heart rate-lowering agent for use in the treatment of chronic stable angina pectoris in case of contraindication or intolerance to beta-blockers. This drug effectively lowers the heart rate by inhibiting the pacemaker current I(f) in the sinoatrial node. It appears to induce fewer adverse reactions than other drugs used for reducing the heart rate, such as calcium channel blockers or beta-blockers.

View Article and Find Full Text PDF

Temporally controlled gene deletion provides a powerful technique for examination of gene function in vivo. To permit use of this technology in the study of cardiac pacemaking, we attempted to generate a mouse line expressing an inducible Cre recombinase selectively in cardiac pacemaker cells. The tamoxifen-inducible CreER(T2) construct was 'knocked in' into the pacemaker channel HCN4 locus.

View Article and Find Full Text PDF

Cardiac pacemaking involves a variety of ion channels, but their relative importance is controversial and remains to be determined. Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, which underlie the I(f) current of sinoatrial cells, are thought to be key players in cardiac automaticity. In addition, the increase in heart rate following beta-adrenergic stimulation has been attributed to the cAMP-mediated enhancement of HCN channel activity.

View Article and Find Full Text PDF

Hyperpolarization-activated cation currents termed I (f/h) are observed in many neurons and cardiac cells. Four genes (HCN1-4) encode the channels underlying these currents. New insights into the pathophysiological significance of HCN channels have been gained recently from analyses of mice engineered to be deficient in HCN genes.

View Article and Find Full Text PDF

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels mediate the pacemaker current (Ih or If) observed in electrically rhythmic cardiac and neuronal cells. Here we describe a hyperpolarization-activated time-dependent cationic current, beta-Ih, in pancreatic beta-cells. Transcripts for HCN1-4 were detected by RT-PCR and quantitative PCR in rat islets and MIN6 mouse insulinoma cells.

View Article and Find Full Text PDF

Sinus node inhibitors reduce the heart rate presumably by blocking the pacemaker current If in the cardiac conduction system. This pacemaker current is carried by four hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. We tested the potential subtype-specificity of the sinus node inhibitors cilobradine, ivabradine, and zatebradine using cloned HCN channels.

View Article and Find Full Text PDF

Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels underlie the inward pacemaker current, termed I(f)/I(h), in a variety of tissues. Many details are known for the HCN subtypes 1, 2, and 4. We now successfully cloned the cDNA for HCN3 from human brain and compared the electrophysiological properties of hHCN3 to the other three HCN subtypes.

View Article and Find Full Text PDF

Signalling by cGMP-dependent protein kinase type I (cGKI) relaxes various smooth muscles modulating thereby vascular tone and gastrointestinal motility. cGKI-dependent relaxation is possibly mediated by phosphorylation of the inositol 1,4,5-trisphosphate receptor I (IP(3)RI)-associated protein (IRAG), which decreases hormone-induced IP(3)-dependent Ca(2+) release. We show now that the targeted deletion of exon 12 of IRAG coding for the N-terminus of the coiled-coil domain disrupted in vivo the IRAG-IP(3)RI interaction and resulted in hypomorphic IRAG(Delta12/Delta12) mice.

View Article and Find Full Text PDF

Cardiac pacemaker activity is regulated by at least five different classes of ion channels and by the opposing influence of sympathetic and parasympathetic stimulation. Inactivation of several genes, including a subunit coding for the potassium channel activated by the muscarinic receptor, I(KACh); the calcium channel, I(Ca,); and the hyperpolarization-activated channel, I(f), results in sinus node arrhythmia. Inactivation of the gene for the hyperpolarization-activated, cyclic nucleotide-gated channel isoform HCN2 or HCN4 and the use of pacemaker channel blockers show that (a) HCN2 prevents the diastolic membrane potential from becoming too negative, (b) HCN4 is the major channel mediating sympathetic stimulation of the pacemaker activity, and (3) complete blockage of the I(f) current is compatible with slow sinus node rhythm.

View Article and Find Full Text PDF

Hyperpolarization-activated, cyclic nucleotide-gated cation currents, termed If or Ih, are generated by four members of the hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channel family. These currents have been proposed to contribute to several functions including pacemaker activity in heart and brain, control of resting potential, and neuronal plasticity. Transcripts of the HCN4 isoform have been found in cardiomyocytes and neurons, but the physiological role of this channel is unknown.

View Article and Find Full Text PDF

The pacemaker channels HCN2 and HCN4 have been identified in cardiac sino-atrial node cells. These channels differ considerably in several kinetic properties including the activation time constant (tau act), which is fast for HCN2 (144 ms at -140 mV) and slow for HCN4 (461 ms at -140 mV). Here, by analyzing HCN2/4 chimeras and mutants we identified single amino acid residues in transmembrane segments 1 and 2 and the connecting loop between S1 and S2 that are major determinants of this difference.

View Article and Find Full Text PDF

Hyperpolarization-activated cation (HCN) channels are believed to be involved in the generation of cardiac pacemaker depolarizations as well as in the control of neuronal excitability and plasticity. The contributions of the four individual HCN channel isoforms (HCN1-4) to these diverse functions are not known. Here we show that HCN2-deficient mice exhibit spontaneous absence seizures.

View Article and Find Full Text PDF