Publications by authors named "Juliane Schuphan"

Plant viruses are naturally occurring nanoparticles and adjuvants that interact with the mammalian immune system. This property can be harnessed in vaccines and immunotherapy. We have previously demonstrated that intratumoral immunotherapy with cowpea mosaic virus (CPMV) stimulates systemic and durable antitumor immunity in mouse tumor models and canine cancer patients.

View Article and Find Full Text PDF

Plant virus nanoparticles (VNPs) genetically engineered to present osteogenic cues provide a promising method for biofunctionalizing hydrogels in bone tissue engineering. Flexible Potato virus X (PVX) nanoparticles substantially enhance the attachment and differentiation of human mesenchymal stem cells (hMSCs) by presenting the RGD motif, hydroxyapatite-binding peptide (HABP), or consecutive polyglutamates (E8) in a concentration-dependent manner. Therefore, it is hypothesized that Tobacco mosaic virus nanoparticles, which present 1.

View Article and Find Full Text PDF

Plant virus nanoparticles are promising candidates for the development of novel materials, including nanocomposites and scaffolds/carriers for functional molecules such as enzymes. Their advantages for enzyme immobilization include a modular organization, a robust and programmable structure, and a simple, cost-effective production. However, the activity of many enzymes relies on posttranslational modification and most plant viruses replicate in the cytoplasm, so functional enzymes cannot be displayed on the virus surface by direct coat protein fusions.

View Article and Find Full Text PDF

Hydrogel-based materials are widely used to mimic the extracellular matrix in bone tissue engineering, although they often lack biofunctional cues. In the authors' previous work, Potato virus X (PVX), a flexible rod-shaped biocompatible plant virus nanoparticle (VNP) with 1270 coat protein subunits, is genetically modified to present functional peptides for generating a bone substitute. Here, PVX is engineered to present mineralization- and osteogenesis-associated peptides and laden in hydrogels at a concentration lower by two orders of magnitude.

View Article and Find Full Text PDF