Background: To date, migraine is diagnosed exclusively based on clinical criteria, but fluid biomarkers are desirable to gain insight into pathophysiological processes and inform clinical management. We investigated the state-dependent profile of fluid biomarkers for neuroaxonal damage and microglial activation as two potentially relevant aspects in human migraine pathophysiology.
Methods: This exploratory study included serum and cerebrospinal fluid (CSF) samples of patients with migraine during the headache phase (ictally) (n = 23), between attacks (interictally) (n = 16), and age/sex-matched controls (n = 19).
Introduction: Immunological alterations associated with increased susceptibility to infection are an essential aspect of stroke pathophysiology. Several immunological functions of adipose tissue are altered by obesity and are accompanied by chronic immune activation. The purpose of this study was to examine immune function (monocytes, granulocytes, cytokines) as a function of body mass index (BMI: 1st group: 25; 2nd group: 25 BMI 30; 3rd group: 30) and changes in body weight post stroke.
View Article and Find Full Text PDFBy applying the acetyl-CoA-carboxylase inhibitors soraphen A (SorA) and coenzyme A (CoA) ex vivo, we aimed to reduce proinflammatory cytokine release by PBMCs and increase anti-inflammatory cytokine levels, thereby demonstrating a possible application of those pathways in future multiple sclerosis (MS) therapy. In a prospective exploratory monocentric study, we analysed cytokine production by PBMCs treated with SorA (10 or 50 nM) and CoA (600 μM). Thirty-one MS patients were compared to 18 healthy age-matched controls.
View Article and Find Full Text PDFBackground And Purpose: Stroke therapy still lacks successful measures to improve post stroke recovery. Neurotrophin-3 (NT-3) is one promising candidate which has proven therapeutic benefit in motor recovery in acute experimental stroke. Post stroke, the immune system has opposing pathophysiological roles: pro-inflammatory cascades and immune cell infiltration into the brain exacerbate cell death while the peripheral immune response has only limited capabilities to fight infections during the acute and subacute phase.
View Article and Find Full Text PDFBackground And Purpose: T lymphocytes contribute to secondary brain damage after stroke. It has not been fully investigated whether this contribution is caused by antigen-specific or antigen-nonspecific activation of T lymphocytes. Lymphocytes from Nur77GFP transgenic mice express a fluorescent protein upon activation via the TCR (T-cell receptor), allowing the differentiation of activation mode in a natural repertoire of immune cells and antigens.
View Article and Find Full Text PDFStroke patients are at risk of acquiring secondary infections due to stroke-induced immune suppression (SIIS). Immunosuppressive cells comprise myeloid-derived suppressor cells (MDSCs) and immunosuppressive interleukin 10 (IL-10)-producing monocytes. MDSCs represent a small but heterogeneous population of monocytic, polymorphonuclear (or granulocytic), and early progenitor cells ("early" MDSC), which can expand extensively in pathophysiological conditions.
View Article and Find Full Text PDFThe global increase in neurodegenerative disorders is one of the most crucial public health issues. Oral polyamine intake was shown to improve memory performance which is thought to be mediated at least in part via increased autophagy induced in brain cells. In Alzheimer's Disease, T-cells were identified as important mediators of disease pathology.
View Article and Find Full Text PDFStroke induces immediate profound alterations of the peripheral immune system rendering patients more susceptible to post-stroke infections. The precise mechanisms maintaining stroke-induced immune alterations (SIIA) remain unknown. High-Mobility-Group-Protein B1 (HMGB-1) is elevated for at least 7 days post-stroke and has been suggested to mediate SIIA.
View Article and Find Full Text PDFBackground and Purpose- The contribution of neuroinflammation and, in particular, the infiltration of the brain by lymphocytes is increasingly recognized as a substantial pathophysiological mechanism after stroke. The interaction of lymphocytes with endothelial cells and platelets, termed thromboinflammation, fosters microvascular dysfunction and secondary infarct growth. Siponimod is an S1PR (sphingosine-1-phosphate receptor) modulator, which blocks the egress of lymphocytes from lymphoid organs and has demonstrated beneficial effects in multiple sclerosis treatment.
View Article and Find Full Text PDFImmune cells can significantly predict and affect the clinical outcome of stroke. In particular, the neutrophil-to-lymphocyte ratio was shown to predict hemorrhagic transformation and the clinical outcome of stroke; however, the immunological mechanisms underlying these effects are poorly understood. Neutrophils are the first cells to invade injured tissue following focal brain ischemia.
View Article and Find Full Text PDFBackground And Purpose: Regulatory T cells (Tregs) have been suggested to modulate stroke-induced immune responses. However, analyses of Tregs in patients and in experimental stroke have yielded contradictory findings. We performed the current study to assess the regulation and function of Tregs in peripheral blood of stroke patients.
View Article and Find Full Text PDFThe outcome of stroke patients is not only determined by the extent and localization of the ischemic lesion, but also by stroke-associated infections. Stroke-induced immune alterations, which are related to stroke-associated infections, have been described over the last decade. Here we review the evidence that catecholamines and steroids induced by stroke result in stroke-induced immune alterations.
View Article and Find Full Text PDFToll-like receptor-4 (TLR4) is important in neuroinflammation. Single nucleotide polymorphisms (SNPs) in TLR4, including 1063 A/G [Asp299Gly] and 1363 C/T [Thr399Ile], are associated with altered immune responses but their effect on acute ischemic stroke (AIS) outcome is unknown. We collected demographic, clinical, laboratory, radiologic, and genotype data on 113 AIS patients and performed multivariate analyses to assess associations between TLR4 SNP haplotype and either neurological outcome, infection, or inflammatory markers.
View Article and Find Full Text PDFBackground: Infection is a common phenomenon following stroke, and adversely affects outcome. Previous studies suggest that interleukin-1 receptor antagonist (IL-1ra) and single nucleotide polymorphisms (SNPs) in the IL1RN gene might influence the risk of post-stroke infection and outcome. In this study, we addressed the effects of the rs4251961 SNP in IL1RN on infection risk and outcome.
View Article and Find Full Text PDFAnimals that have myelin basic protein (MBP) specific lymphocytes with a Th1(+) phenotype have worse stroke outcome than those that do not. Whether these MBP specific cells contribute to worsened outcome or are merely a consequence of worse outcome is unclear. In these experiments, lymphocytes were obtained from donor animals one month after stroke and transferred to naïve recipient animals at the time of cerebral ischemia.
View Article and Find Full Text PDFBackground And Purpose: The signals that initiate the poststroke inflammatory response are unknown. High-mobility group box (HMGB) 1 protein is a nuclear protein that is passively released from necrotic tissue and is able to activate leukocytes, which in turn secrete HMGB1. HMGB1 is also able to activate antigen-presenting cells and therefore stands at the crossroads of innate and adaptive immunity.
View Article and Find Full Text PDF