Background: Electroencephalography (EEG) is a popular method to monitor brain activity, but it is difficult to evaluate EEG-based analysis methods because no ground-truth brain activity is available for comparison. Therefore, in order to test and evaluate such methods, researchers often use simulated EEG data instead of actual EEG recordings. Simulated data can be used, among other things, to assess or compare signal processing and machine learning algorithms, to model EEG variabilities, and to design source reconstruction methods.
View Article and Find Full Text PDFWe tested the applicability and signal quality of a 16 channel dry electroencephalography (EEG) system in a laboratory environment and in a car under controlled, realistic conditions. The aim of our investigation was an estimation how well a passive Brain-Computer Interface (pBCI) can work in an autonomous driving scenario. The evaluation considered speed and accuracy of self-applicability by an untrained person, quality of recorded EEG data, shifts of electrode positions on the head after driving-related movements, usability, and complexity of the system as such and wearing comfort over time.
View Article and Find Full Text PDF